IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics037837742300392x.html
   My bibliography  Save this article

Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency

Author

Listed:
  • Zhu, Rui
  • Hu, Tiesong
  • Wu, Fengyan
  • Liu, Yong
  • Zhou, Shan
  • Wang, Yanxuan

Abstract

Effects of water deficit and flooding stress on rice’s intrinsic water-use efficiency (iWUE) and how iWUE variations are linked to stress-induced physiological changes are poorly understood. Here, we proposed a model-based approach to analyze iWUE across datasets and its relationship with physiological changes, using only leaf gas exchange data and plant hydraulic vulnerability parameters. We applied this approach to a leaf gas exchange dataset of rice, measured during the post-stress period of water deficit and flooding experiments. Results show that water deficit and flooding stress decreased rice’s photosynthetic capacity (Vcmax25) and water transport capacity (Kmax) during the post-stress period, and that these physiological changes altered the relationship between photosynthetic rate and stomatal conductance, leading to an increase in iWUE. Nevertheless, improved iWUE cannot avoid the yield reduction. Interestingly, the stress-induced decrease in Vcmax25 was significantly correlated with the decline in Kmax. The Vcmax25-Kmax relationship was significantly different between the water deficit and flooding treatments, with the slope of the latter being closer to 1:1. Model predicts that stress-induced disproportionate Vcmax25-Kmax co-reduction improved iWUE while maintaining a relatively high intercellular to atmosphere CO2 concentration ratio; this may represent optimal coordination between photosynthetic and hydraulic traits in response to stress. Our work has important implications for using leaf gas exchange data to diagnose variations in iWUE, and for improving our understanding of crop physiological responses to environmental stresses.

Suggested Citation

  • Zhu, Rui & Hu, Tiesong & Wu, Fengyan & Liu, Yong & Zhou, Shan & Wang, Yanxuan, 2023. "Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s037837742300392x
    DOI: 10.1016/j.agwat.2023.108527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742300392X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan-Shih Lin & Belinda E. Medlyn & Remko A. Duursma & I. Colin Prentice & Han Wang & Sofia Baig & Derek Eamus & Victor Resco de Dios & Patrick Mitchell & David S. Ellsworth & Maarten Op de Beeck & Gör, 2015. "Optimal stomatal behaviour around the world," Nature Climate Change, Nature, vol. 5(5), pages 459-464, May.
    2. Yangjie Wang & Jikun Huang & Jinxia Wang & Christopher Findlay, 2018. "Mitigating rice production risks from drought through improving irrigation infrastructure and management in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 161-176, January.
    3. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    4. Madana M. R. Ambavaram & Supratim Basu & Arjun Krishnan & Venkategowda Ramegowda & Utlwang Batlang & Lutfor Rahman & Niranjan Baisakh & Andy Pereira, 2014. "Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress," Nature Communications, Nature, vol. 5(1), pages 1-14, December.
    5. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    6. Zhuang, Yanhua & Zhang, Liang & Li, Sisi & Liu, Hongbin & Zhai, Limei & Zhou, Feng & Ye, Yushi & Ruan, Shuhe & Wen, Weijia, 2019. "Effects and potential of water-saving irrigation for rice production in China," Agricultural Water Management, Elsevier, vol. 217(C), pages 374-382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
    2. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    3. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    4. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    5. repec:ags:aaea22:335489 is not listed on IDEAS
    6. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    7. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    8. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    10. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    11. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    12. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    13. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    14. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    15. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    16. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    17. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    18. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    19. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    20. Kelly R. Wilson & Robert L. Myers & Mary K. Hendrickson & Emily A. Heaton, 2022. "Different Stakeholders’ Conceptualizations and Perspectives of Regenerative Agriculture Reveals More Consensus Than Discord," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    21. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s037837742300392x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.