IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3865-d1074915.html
   My bibliography  Save this article

Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China

Author

Listed:
  • Jinhua Wen

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Yian Hua

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China
    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Chenkai Cai

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Shiwu Wang

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Helong Wang

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China
    College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Xinyan Zhou

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Jian Huang

    (Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China)

  • Jianqun Wang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

In recent years, flash droughts with a rapid onset and strong intensity have attracted extensive attention due to their impact on agriculture and ecosystems. However, there is still no feasible method for flash drought forecasting and early warning. This paper employs the thresholds of several meteorological variables to identify flash droughts in Zhejiang Province, China, and build a probabilistic flash drought forecasting model through numeric weather forecast (NWF) and the generalized Bayesian model (GBM). The results show that the northern part of Zhejiang Province has the highest risk of flash drought. The NWF is a viable method to provide future information for flash drought forecasting and early warning, but its forecasting accuracy tends to decline with the increase in the lead time and is very limited when the lead time is over 5 days, especially for the precipitation forecast. Due to the low performance of the NWF, the flash drought forecast based on the raw NWF may be unreliable when the lead time is over 5 days. To solve this problem, probabilistic forecasting based on GBM is employed to quantify the uncertainty in the NWF and is tested through an example analysis. In the example analysis, it was found that the probability of a flash drought exceeds 30% from the probabilistic forecasting when the lead time is 12 days, while the deterministic forecasting via the raw NWF cannot identify a flash drought when the lead time is over 5 days. In conclusion, probabilistic forecasting can identify a potential flash drought earlier and can be used to evaluate the risk of a flash drought, which is conducive for the early warning of flash droughts and the development of response measures.

Suggested Citation

  • Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3865-:d:1074915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    3. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    4. Angeline G. Pendergrass & Gerald A. Meehl & Roger Pulwarty & Mike Hobbins & Andrew Hoell & Amir AghaKouchak & Céline J. W. Bonfils & Ailie J. E. Gallant & Martin Hoerling & David Hoffmann & Laurna Kaa, 2020. "Flash droughts present a new challenge for subseasonal-to-seasonal prediction," Nature Climate Change, Nature, vol. 10(3), pages 191-199, March.
    5. Adriaan J. Teuling, 2018. "A hot future for European droughts," Nature Climate Change, Nature, vol. 8(5), pages 364-365, May.
    6. Xing Yuan & Linying Wang & Peili Wu & Peng Ji & Justin Sheffield & Miao Zhang, 2019. "Anthropogenic shift towards higher risk of flash drought over China," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    2. Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
    3. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    5. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    6. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    7. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    8. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    9. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    10. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    11. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    13. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    14. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    15. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    17. Yuan Li & Yi Dong & Dongqin Yin & Diyou Liu & Pengxin Wang & Jianxi Huang & Zhe Liu & Hongshuo Wang, 2020. "Evaluation of Drought Monitoring Effect of Winter Wheat in Henan Province of China Based on Multi-Source Data," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    18. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    19. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    20. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3865-:d:1074915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.