IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v34y2024i2p17-31id2.html
   My bibliography  Save this article

Analysis of temporal evolution of tourist visits to the region of Morón de la Frontera (Spain). Two possible explanatory variables of this evolution

Author

Listed:
  • José Antonio Camuñez Ruiz
  • Germán Ramos Campos

Abstract

The municipality of Morón de la Frontera located in the province of Seville (Spain) has been promoting tourist visits in recent years, measured through the number of visitors, as another public and private income source. This number, considered at a monthly or annual level, is a good indicator of the tourist evolution of the municipality and, for this reason, in this work, it is chosen as an objective variable, in the sense of trying to explain it from nearby variables. Then, for the said variable, we carry out a TRAMO analysis, reflecting its trend and showing its seasonality. Also, a regression analysis with the objective variable explained by the time series measures the number of monthly visitors to the province of Seville, resulting in a positive and significant correlation of 0.4914 between both series. And, finally, a regression analysis where the objective variable, this time measured at an annual level, is explained by the GDP of the province of Seville, showing a positive and significant correlation, 0.489.

Suggested Citation

  • José Antonio Camuñez Ruiz & Germán Ramos Campos, 2024. "Analysis of temporal evolution of tourist visits to the region of Morón de la Frontera (Spain). Two possible explanatory variables of this evolution," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 17-31.
  • Handle: RePEc:wut:journl:v:34:y:2024:i:2:p:17-31:id:2
    DOI: 10.37190/ord240202
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no2_2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord240202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    2. Faiza Manzoor & Longbao Wei & Muhammad Asif & Muhammad Zia ul Haq & Hafiz ur Rehman, 2019. "The Contribution of Sustainable Tourism to Economic Growth and Employment in Pakistan," IJERPH, MDPI, vol. 16(19), pages 1-14, October.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    4. Maravall, Agustin, 1985. "On Structural Time Series Models and the Characterization of Components," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 350-355, October.
    5. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Jorge Barrientos Marin & Elkin Tabares Orozco & Esteban Velilla, 2018. "Forecasting electricity price in Colombia: A comparison between Neural Network, ARMA process and Hybrid Models," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 97-106.
    3. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
    4. Valentin C. Mihai & Diana E. Dumitras & Camelia Oroian & Gabriela O. Chiciudean & Felix H. Arion & Iulia Cristina Mureșan, 2023. "Exploring the Factors Involved in Tourists’ Decision-Making and Determinants of Length of Stay," Administrative Sciences, MDPI, vol. 13(10), pages 1-14, October.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    7. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    8. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    9. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    10. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    11. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    12. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    13. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    14. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    15. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    16. Gangwei Cai & Baoping Zou & Xiaoting Chi & Xincheng He & Yuang Guo & Wen Jiang & Qian Wu & Yujin Zhang & Yanna Zhou, 2023. "Neighborhood Spatio-Temporal Impacts of SDG 8.9: The Case of Urban and Rural Exhibition-Driven Tourism by Multiple Methods," Land, MDPI, vol. 12(2), pages 1-37, January.
    17. Marie Bessec & Julien Fouquau & Sophie Meritet, 2016. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Applied Economics, Taylor & Francis Journals, vol. 48(5), pages 361-378, January.
    18. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    19. Berlin Wu & Liyang Chen, 2006. "Use of Partial Cumulative Sum to Detect Trends and Change Periods for Nonlinear Time Series," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 2(2), pages 123-145, July.
    20. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:34:y:2024:i:2:p:17-31:id:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.