IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-03-15.html
   My bibliography  Save this article

Forecasting electricity price in Colombia: A comparison between Neural Network, ARMA process and Hybrid Models

Author

Listed:
  • Jorge Barrientos Marin

    (Department of Economics, Faculty of Economic Science, University of Antioquia, Medell n, Colombia,)

  • Elkin Tabares Orozco

    (Department of Economics, Faculty of Economic Science, University of Antioquia, Medell n, Colombia,)

  • Esteban Velilla

    (Department of Electrical Engineering, Faculty of Engineering, University of Antioquia, Medell n, Colombia)

Abstract

This study aims to predict electricity prices in the Colombian electricity market. To achieve this goal, conventional time series econometrics analysis and one alternative technique based on artificial intelligence algorithms have been implemented. We use autoregressive-moving-average models (ARMAX) and non-linear autoregressive neural networks (NARX). After estimating a hybrid model that combines ARMAX and ARNX models, including exogenous inputs, we forecasted an electricity price time series in a horizon of 12 months ahead (May 2017). Results show that NARX model's performance is not significantly better than ARMAX's. After applying a Diebold-Mariano test for forecasting accuracy, the null hypothesis is not rejected. This suggests no significant difference in predictive accuracy between the competing methodologies.

Suggested Citation

  • Jorge Barrientos Marin & Elkin Tabares Orozco & Esteban Velilla, 2018. "Forecasting electricity price in Colombia: A comparison between Neural Network, ARMA process and Hybrid Models," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 97-106.
  • Handle: RePEc:eco:journ2:2018-03-15
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6181/3684
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6181/3684
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    2. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    4. Barrientos Marin, Jorge & Toro Martínez, Mónica, 2015. "La hidrología como predictor del comportamiento del precio de energía en bolsa," Perfil de Coyuntura Económica, Universidad de Antioquia, CIE, issue 25, pages 125-140, May.
    5. Jan Smolen & Branislav Dudic, 2017. "The Role of Residual Demand in Electricity Price Analysis and Forecasting: Case of Czech Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 152-158.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Barrientos Marín, Jorge & Rodas, Edwin & Velilla, Esteban & Lopera, Mauricio, 2012. "Modelo para el pronóstico del precio de la energía eléctrica en Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, October.
    8. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    9. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    10. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
    11. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    12. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    13. Girish Godekere Panchakshara Murthy & Vijayalakshmi Sedidi, 2014. "Forecasting Electricity Prices in Deregulated Wholesale Spot Electricity Market: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 4(1), pages 32-42.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    16. Cavaliere, Giuseppe & Georgiev, Iliyan, 2007. "Testing For Unit Roots In Autoregressions With Multiple Level Shifts," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1162-1215, December.
    17. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    18. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Umar M. Mustapha, 2012. "The Role of Speculation in the Determination of Energy Prices," International Journal of Energy Economics and Policy, Econjournals, vol. 2(4), pages 279-291.
    20. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoming Xie & Meiping Li & Du Zhang, 2021. "A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning," Energies, MDPI, vol. 14(21), pages 1-14, November.
    2. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    3. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
    4. Santiago Gall n & Jorge Barrientos, 2021. "Forecasting the Colombian Electricity Spot Price under a Functional Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 67-74.
    5. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    6. Sebastián Arias & Adriana M. Santa-Alvarado & Harold Salazar, 2024. "The Impact of a Market Maker in an Electricity Market," Energies, MDPI, vol. 17(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    3. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    4. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    5. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    8. S. Vijayalakshmi & G. P. Girish, 2015. "Artificial Neural Networks for Spot Electricity Price Forecasting: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1092-1097.
    9. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    10. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    11. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    12. Lance J. Bachmeier & Norman R. Swanson, 2005. "Predicting Inflation: Does The Quantity Theory Help?," Economic Inquiry, Western Economic Association International, vol. 43(3), pages 570-585, July.
    13. Fernandes, Mário Correia & Dias, José Carlos & Nunes, João Pedro Vidal, 2021. "Modeling energy prices under energy transition: A novel stochastic-copula approach," Economic Modelling, Elsevier, vol. 105(C).
    14. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    15. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Marie Bessec & Julien Fouquau & Sophie Meritet, 2016. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Applied Economics, Taylor & Francis Journals, vol. 48(5), pages 361-378, January.
    18. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    19. Swanson, Norman R., 2002. "Comments on 'A vector error-correction forecasting model of the US economy'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 599-606, December.
    20. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.

    More about this item

    Keywords

    Stochastic Process; Autoregressive-moving-average; NARX; Random Walk; Predictive Accuracy; Electricity Spot Price;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-03-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.