IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v1y2011p53-64id178.html
   My bibliography  Save this article

Performance analysis of commercial offset printing under dynamic priority rules

Author

Listed:
  • Przemysław Korytkowski
  • Tomasz Wiśniewski

Abstract

A profit analysis of a commercial offset printing production system working under various dy- namic priority rules has been undertaken. The task is to investigate both whether and how a change in priority rules affects the system’s performance. A mutual impact of the dynamic priority rule utilized (EDD, LOR, MOR, SPT, and LPT), system workload (by means of machine utilization) and input buffer capacities have been studied.

Suggested Citation

  • Przemysław Korytkowski & Tomasz Wiśniewski, 2011. "Performance analysis of commercial offset printing under dynamic priority rules," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 21(1), pages 53-64.
  • Handle: RePEc:wut:journl:v:1:y:2011:p:53-64:id:178
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/178%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Kilhwan & Chae, Kyung C., 2010. "Discrete-time queues with discretionary priorities," European Journal of Operational Research, Elsevier, vol. 200(2), pages 473-485, January.
    2. Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
    3. Song, D. P. & Hicks, C. & Earl, C. F., 2002. "Product due date assignment for complex assemblies," International Journal of Production Economics, Elsevier, vol. 76(3), pages 243-256, April.
    4. Mor Harchol-Balter & Takayuki Osogami & Alan Scheller-Wolf & Adam Wierman, 2005. "Multi-Server Queueing Systems with Multiple Priority Classes," Queueing Systems: Theory and Applications, Springer, vol. 51(3), pages 331-360, December.
    5. Bedford, A. & Zeephongsekul, P., 2005. "On a dual queueing system with preemptive priority service discipline," European Journal of Operational Research, Elsevier, vol. 161(1), pages 224-239, February.
    6. Krishnamoorthy, A. & Babu, S. & Narayanan, Viswanath C., 2009. "The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service," European Journal of Operational Research, Elsevier, vol. 195(1), pages 174-185, May.
    7. J. G. Dai & D. H. Yeh & C. Zhou, 1997. "The QNET Method for Re-Entrant Queueing Networks with Priority Disciplines," Operations Research, INFORMS, vol. 45(4), pages 610-623, August.
    8. Joris Walraevens & Bart Steyaert & Herwig Bruneel, 2006. "A preemptive repeat priority queue with resampling: Performance analysis," Annals of Operations Research, Springer, vol. 146(1), pages 189-202, September.
    9. Hong Chen & Xinyang Shen & David D. Yao, 2002. "Brownian Approximations of Multiclass Open-Queueing Networks," Operations Research, INFORMS, vol. 50(6), pages 1032-1049, December.
    10. Onésimo Hernández-Lerma & Luis F. Hoyos-Reyes, 2001. "A multiobjective control approach to priority queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(2), pages 265-277, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herwig Bruneel & Arnaud Devos, 2024. "Explicit Solutions for Coupled Parallel Queues," Mathematics, MDPI, vol. 12(15), pages 1-31, July.
    2. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    3. Guan Wang & Yang Woo Shin & Dug Hee Moon, 2016. "Comparison of three flow line layouts with unreliable machines and profit maximization," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 669-693, December.
    4. Sofian De Clercq & Koenraad Laevens & Bart Steyaert & Herwig Bruneel, 2013. "A multi-class discrete-time queueing system under the FCFS service discipline," Annals of Operations Research, Springer, vol. 202(1), pages 59-73, January.
    5. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
    6. I. Atencia, 2015. "A discrete-time queueing system with server breakdowns and changes in the repair times," Annals of Operations Research, Springer, vol. 235(1), pages 37-49, December.
    7. Song, Dong-Ping, 2006. "Raw material release time control for complex make-to-order products with stochastic processing times," International Journal of Production Economics, Elsevier, vol. 103(1), pages 371-385, September.
    8. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    9. Zeephongsekul, P. & Bedford, A., 2006. "Waiting time analysis of the multiple priority dual queue with a preemptive priority service discipline," European Journal of Operational Research, Elsevier, vol. 172(3), pages 886-908, August.
    10. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    11. Herwig Bruneel & Dieter Fiems & Joris Walraevens & Sabine Wittevrongel, 2014. "Queueing models for the analysis of communication systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 421-448, July.
    12. Walraevens, Joris & Fiems, Dieter & Wittevrongel, Sabine & Bruneel, Herwig, 2009. "Calculation of output characteristics of a priority queue through a busy period analysis," European Journal of Operational Research, Elsevier, vol. 198(3), pages 891-898, November.
    13. Jianfu Wang & Opher Baron & Alan Scheller-Wolf, 2015. "M/M/c Queue with Two Priority Classes," Operations Research, INFORMS, vol. 63(3), pages 733-749, June.
    14. Hu, Lu & Jiang, Yangsheng & Zhu, Juanxiu & Chen, Yanru, 2015. "A PH/PH(n)/C/C state-dependent queuing model for metro station corridor width design," European Journal of Operational Research, Elsevier, vol. 240(1), pages 109-126.
    15. Zhu, Juanxiu & Hu, Lu & Jiang, Yangsheng & Khattak, Afaq, 2017. "Circulation network design for urban rail transit station using a PH(n)/PH(n)/C/C queuing network model," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1043-1068.
    16. Chan, Felix T. S. & Chung, S. H. & Wadhwa, Subhash, 2005. "A hybrid genetic algorithm for production and distribution," Omega, Elsevier, vol. 33(4), pages 345-355, August.
    17. Jori Selen & Brian Fralix, 2017. "Time-dependent analysis of an M / M / c preemptive priority system with two priority classes," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 379-415, December.
    18. Patrik Grznár & Milan Gregor & Štefan Mozol & Martin Krajčovič & Ľuboslav Dulina & Martin Gašo & Michal Major, 2019. "A System to Determine the Optimal Work-in-Progress Inventory Stored in Interoperation Manufacturing Buffers," Sustainability, MDPI, vol. 11(14), pages 1-36, July.
    19. Zorzini, M. & Corti, D. & Pozzetti, A., 2008. "Due date (DD) quotation and capacity planning in make-to-order companies: Results from an empirical analysis," International Journal of Production Economics, Elsevier, vol. 112(2), pages 919-933, April.
    20. Ning Zhao & Zhaotong Lian & Kan Wu, 2015. "Analysis of a MAP/PH/1 Queue with Discretionary Priority Based on Service Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:1:y:2011:p:53-64:id:178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.