IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v235y2015i1p37-4910.1007-s10479-015-1940-3.html
   My bibliography  Save this article

A discrete-time queueing system with server breakdowns and changes in the repair times

Author

Listed:
  • I. Atencia

Abstract

We consider a discrete-time queueing system in which the arriving customers can decide to follow a LCFS discipline or to join the queue. Breakdowns can occur with geometrical lifetime and repair times governed by an arbitrary distribution. The repair times can exert changes governed by a geometrical law. We carry out a thorough study of the model deriving analytical results for the stationary distributions. We obtain generating functions of the number of customers in the queue and in the system. We also obtain the generating function of the repair times taking into account possible changes in the remaining repair times. The generating functions of the busy period, sojourn time in the server, sojourn time in the queue as well as some performance measures are also provided. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • I. Atencia, 2015. "A discrete-time queueing system with server breakdowns and changes in the repair times," Annals of Operations Research, Springer, vol. 235(1), pages 37-49, December.
  • Handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:37-49:10.1007/s10479-015-1940-3
    DOI: 10.1007/s10479-015-1940-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-015-1940-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-015-1940-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison White & Lee S. Christie, 1958. "Queuing with Preemptive Priorities or with Breakdown," Operations Research, INFORMS, vol. 6(1), pages 79-95, February.
    2. A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
    3. Sofian De Clercq & Koenraad Laevens & Bart Steyaert & Herwig Bruneel, 2013. "A multi-class discrete-time queueing system under the FCFS service discipline," Annals of Operations Research, Springer, vol. 202(1), pages 59-73, January.
    4. Dieter Fiems & Bart Steyaert & Herwig Bruneel, 2002. "Randomly Interrupted GI-G-1 Queues: Service Strategies and Stability Issues," Annals of Operations Research, Springer, vol. 112(1), pages 171-183, April.
    5. Joris Walraevens & Bart Steyaert & Herwig Bruneel, 2006. "A preemptive repeat priority queue with resampling: Performance analysis," Annals of Operations Research, Springer, vol. 146(1), pages 189-202, September.
    6. I. Atencia & A. Pechinkin, 2013. "A discrete-time queueing system with optional LCFS discipline," Annals of Operations Research, Springer, vol. 202(1), pages 3-17, January.
    7. Ndreca, Sokol & Scoppola, Benedetto, 2008. "Discrete time GI/Geom/1 queueing system with priority," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1403-1408, September.
    8. B. Avi-Itzhak & P. Naor, 1963. "Some Queuing Problems with the Service Station Subject to Breakdown," Operations Research, INFORMS, vol. 11(3), pages 303-320, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    2. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    3. G. Ayyappan & S. Karpagam, 2018. "An M [ X ] / G ( a , b )/1 Queueing System with Breakdown and Repair, Stand-By Server, Multiple Vacation and Control Policy on Request for Re-Service," Mathematics, MDPI, vol. 6(6), pages 1-18, June.
    4. Lan Shaojun & Tang Yinghui, 2017. "Performance Analysis of a Discrete-Time Queue with Working Breakdowns and Searching for the Optimum Service Rate in Working Breakdown Period," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 176-192, April.
    5. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atencia-Mc.Killop, Ivan & Galán-García, José L. & Aguilera-Venegas, Gabriel & Rodríguez-Cielos, Pedro & Galán-García, MÁngeles, 2018. "A Geo[X]/G[X]/1 retrial queueing system with removal work and total renewal discipline," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 245-253.
    2. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    3. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    4. Herwig Bruneel & Dieter Fiems & Joris Walraevens & Sabine Wittevrongel, 2014. "Queueing models for the analysis of communication systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 421-448, July.
    5. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    6. A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
    7. Sofian De Clercq & Koenraad Laevens & Bart Steyaert & Herwig Bruneel, 2013. "A multi-class discrete-time queueing system under the FCFS service discipline," Annals of Operations Research, Springer, vol. 202(1), pages 59-73, January.
    8. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    9. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    10. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    11. Pedram Sahba & Barış Balcıog̃lu & Dragan Banjevic, 2022. "The impact of disruption characteristics on the performance of a server," Annals of Operations Research, Springer, vol. 317(1), pages 239-252, October.
    12. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    13. Fiems, Dieter & Maertens, Tom & Bruneel, Herwig, 2008. "Queueing systems with different types of server interruptions," European Journal of Operational Research, Elsevier, vol. 188(3), pages 838-845, August.
    14. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    15. Walraevens, Joris & Maertens, Tom & Bruneel, Herwig, 2013. "A semi-preemptive priority scheduling discipline: Performance analysis," European Journal of Operational Research, Elsevier, vol. 224(2), pages 324-332.
    16. Özgecan Ulusçu & Tayfur Altiok, 2013. "Waiting time approximation in multi-class queueing systems with multiple types of class-dependent interruptions," Annals of Operations Research, Springer, vol. 202(1), pages 185-195, January.
    17. Herwig Bruneel & Arnaud Devos, 2024. "Explicit Solutions for Coupled Parallel Queues," Mathematics, MDPI, vol. 12(15), pages 1-31, July.
    18. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    19. Freek Verdonck & Herwig Bruneel & Sabine Wittevrongel, 2022. "Delay analysis of a discrete-time single-server queue with an occasional extra server," Annals of Operations Research, Springer, vol. 310(2), pages 551-575, March.
    20. I. Atencia & P. Moreno, 2006. "A Discrete-Time Geo/ G/1 retrial queue with the server subject to starting failures," Annals of Operations Research, Springer, vol. 141(1), pages 85-107, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:37-49:10.1007/s10479-015-1940-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.