IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i2p421-448.html
   My bibliography  Save this article

Queueing models for the analysis of communication systems

Author

Listed:
  • Herwig Bruneel
  • Dieter Fiems
  • Joris Walraevens
  • Sabine Wittevrongel

Abstract

Queueing models can be used to model and analyze the performance of various subsystems in telecommunication networks; for instance, to estimate the packet loss and packet delay in network routers. Since time is usually synchronized, discrete-time models come natural. We start this paper with a review of suitable discrete-time queueing models for communication systems. We pay special attention to two important characteristics of communication systems. First, traffic usually arrives in bursts, making the classic modeling of the arrival streams by Poisson processes inadequate and requiring the use of more advanced correlated arrival models. Second, different applications have different quality-of-service requirements (packet loss, packet delay, jitter, etc.). Consequently, the common first-come-first-served (FCFS) scheduling is not satisfactory and more elaborate scheduling disciplines are required. Both properties make common memoryless queueing models (M/M/1-type models) inadequate. After the review, we therefore concentrate on a discrete-time queueing analysis with two traffic classes, heterogeneous train arrivals and a priority scheduling discipline, as an example analysis where both time correlation and heterogeneity in the arrival process as well as non-FCFS scheduling are taken into account. Focus is on delay performance measures, such as the mean delay experienced by both types of packets and probability tails of these delays. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Herwig Bruneel & Dieter Fiems & Joris Walraevens & Sabine Wittevrongel, 2014. "Queueing models for the analysis of communication systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 421-448, July.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:421-448
    DOI: 10.1007/s11750-014-0330-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-014-0330-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-014-0330-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison White & Lee S. Christie, 1958. "Queuing with Preemptive Priorities or with Breakdown," Operations Research, INFORMS, vol. 6(1), pages 79-95, February.
    2. K. Thiruvengadam, 1963. "Queuing with Breakdowns," Operations Research, INFORMS, vol. 11(1), pages 62-71, February.
    3. Daniel Wei‐Chung Miao & Hsou‐Chun Lee, 2013. "Second‐order performance analysis of discrete‐time queues fed by DAR(2) sources with a focus on the marginal effect of the additional traffic parameter," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(1), pages 45-60, January.
    4. Hiroshi Inai & Jiro Yamakita, 1998. "A two-layer queueing model to predict performance of packet transfer in broadband networks," Annals of Operations Research, Springer, vol. 79(0), pages 349-371, January.
    5. Joris Walraevens & Bart Steyaert & Herwig Bruneel, 2006. "A preemptive repeat priority queue with resampling: Performance analysis," Annals of Operations Research, Springer, vol. 146(1), pages 189-202, September.
    6. S De Vuyst & S Wittevrongel & H Bruneel, 2001. "Statistical multiplexing of correlated variable-length packet trains: an analytic performance study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 318-327, March.
    7. Jeongsim Kim & Bara Kim & Khosrow Sohraby, 2008. "Mean queue size in a queue with discrete autoregressive arrivals of order p," Annals of Operations Research, Springer, vol. 162(1), pages 69-83, September.
    8. Walraevens, Joris & Steyaert, Bart & Bruneel, Herwig, 2008. "Analysis of a discrete-time preemptive resume priority buffer," European Journal of Operational Research, Elsevier, vol. 186(1), pages 182-201, April.
    9. B. Avi-Itzhak & P. Naor, 1963. "Some Queuing Problems with the Service Station Subject to Breakdown," Operations Research, INFORMS, vol. 11(3), pages 303-320, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herwig Bruneel & Dieter Fiems & Joris Walraevens & Sabine Wittevrongel, 2014. "Rejoinder on: Queueing models for the analysis of communication systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 460-468, July.
    2. Sofian Clercq & Bart Steyaert & Sabine Wittevrongel & Herwig Bruneel, 2016. "Analysis of a discrete-time queue with time-limited overtake priority," Annals of Operations Research, Springer, vol. 238(1), pages 69-97, March.
    3. Onno Boxma, 2014. "Comments on: Queueing models for the analysis of communication systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 449-453, July.
    4. Sofian Clercq & Bart Steyaert & Sabine Wittevrongel & Herwig Bruneel, 2016. "Analysis of a discrete-time queue with time-limited overtake priority," Annals of Operations Research, Springer, vol. 238(1), pages 69-97, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Atencia, 2015. "A discrete-time queueing system with server breakdowns and changes in the repair times," Annals of Operations Research, Springer, vol. 235(1), pages 37-49, December.
    2. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    3. Fiems, Dieter & Maertens, Tom & Bruneel, Herwig, 2008. "Queueing systems with different types of server interruptions," European Journal of Operational Research, Elsevier, vol. 188(3), pages 838-845, August.
    4. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    5. Herwig Bruneel & Arnaud Devos, 2024. "Explicit Solutions for Coupled Parallel Queues," Mathematics, MDPI, vol. 12(15), pages 1-31, July.
    6. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    7. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    8. Pedram Sahba & Barış Balcıog̃lu & Dragan Banjevic, 2022. "The impact of disruption characteristics on the performance of a server," Annals of Operations Research, Springer, vol. 317(1), pages 239-252, October.
    9. Sauer Cornelia & Daduna Hans, 2003. "Availability Formulas and Performance Measures for Separable Degradable Networks," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 165-194, January.
    10. Atencia-Mc.Killop, Ivan & Galán-García, José L. & Aguilera-Venegas, Gabriel & Rodríguez-Cielos, Pedro & Galán-García, MÁngeles, 2018. "A Geo[X]/G[X]/1 retrial queueing system with removal work and total renewal discipline," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 245-253.
    11. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    12. Kim, Kilhwan & Chae, Kyung C., 2010. "Discrete-time queues with discretionary priorities," European Journal of Operational Research, Elsevier, vol. 200(2), pages 473-485, January.
    13. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    14. A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
    15. Özgecan Ulusçu & Tayfur Altiok, 2013. "Waiting time approximation in multi-class queueing systems with multiple types of class-dependent interruptions," Annals of Operations Research, Springer, vol. 202(1), pages 185-195, January.
    16. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    17. P. Vijaya Laxmi & E. Girija Bhavani, 2024. "Strategic behavior of customers in a second optional service queue with service interruptions," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 762-784, June.
    18. Sofian De Clercq & Koenraad Laevens & Bart Steyaert & Herwig Bruneel, 2013. "A multi-class discrete-time queueing system under the FCFS service discipline," Annals of Operations Research, Springer, vol. 202(1), pages 59-73, January.
    19. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Walraevens, Joris & Fiems, Dieter & Wittevrongel, Sabine & Bruneel, Herwig, 2009. "Calculation of output characteristics of a priority queue through a busy period analysis," European Journal of Operational Research, Elsevier, vol. 198(3), pages 891-898, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:421-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.