Comparison of three flow line layouts with unreliable machines and profit maximization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10696-015-9233-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Staley, Dan R. & Kim, David S., 2012. "Experimental results for the allocation of buffers in closed serial production lines," International Journal of Production Economics, Elsevier, vol. 137(2), pages 284-291.
- Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
- Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
- Stanley Gershwin & James Schor, 2000. "Efficient algorithms for buffer space allocation," Annals of Operations Research, Springer, vol. 93(1), pages 117-144, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
- George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
- Sabry Shaaban & Tom Mcnamara & Sarah Hudson, 2015. "The impact of failure, repair and joint imbalance of processing time means & buffer sizes on the performance of unpaced production lines," Post-Print hal-01205567, HAL.
- Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
- Stefan Helber & Katja Schimmelpfeng & Raik Stolletz & Svenja Lagershausen, 2011.
"Using linear programming to analyze and optimize stochastic flow lines,"
Annals of Operations Research, Springer, vol. 182(1), pages 193-211, January.
- Helber, Stefan & Schimmelpfeng, Katja & Stolletz, Raik & Lagershausen, Svenja, 2008. "Using linear programming to analyze and optimize stochastic flow lines," Hannover Economic Papers (HEP) dp-389, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
- Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
- Federico Nuñez-Piña & Joselito Medina-Marin & Juan Carlos Seck-Tuoh-Mora & Norberto Hernandez-Romero & Eva Selene Hernandez-Gress, 2018. "Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks," Complexity, Hindawi, vol. 2018, pages 1-10, January.
- Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
- Colledani, Marcello & Tolio, Tullio, 2009. "Performance evaluation of production systems monitored by statistical process control and off-line inspections," International Journal of Production Economics, Elsevier, vol. 120(2), pages 348-367, August.
- Ziwei Lin & Nicla Frigerio & Andrea Matta & Shichang Du, 2021. "Multi-fidelity surrogate-based optimization for decomposed buffer allocation problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 223-253, March.
- Bengisu Urlu & Nesim K. Erkip, 2020. "Safety stock placement for serial systems under supply process uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 395-424, June.
- Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Andrea Bacchetti & Stefano Bonetti & Marco Perona & Nicola Saccani, 2018. "Investment and Management Decisions in Aluminium Melting: A Total Cost of Ownership Model and Practical Applications," Sustainability, MDPI, vol. 10(9), pages 1-36, September.
- Sabry Shaaban & Rodrigo Romero-Silva, 2021. "Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1253-1288, December.
- Mehmet Ulaş Koyuncuoğlu & Leyla Demir, 2021. "A comparison of combat genetic and big bang–big crunch algorithms for solving the buffer allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1529-1546, August.
- Gosavi, Abhijit & Gosavi, Aparna A., 2024. "CONWIP control in the digitized world: The case of the cyber-physical jobshop," International Journal of Production Economics, Elsevier, vol. 270(C).
- Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi & Stanley Gershwin & Irvin Schick, 2013. "Discrete time model for two-machine one-buffer transfer lines with restart policy," Annals of Operations Research, Springer, vol. 209(1), pages 41-65, October.
- Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
- Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
More about this item
Keywords
Manufacturing system design; Flow line; Buffer allocation; Queueing network; Profit maximization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:4:d:10.1007_s10696-015-9233-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.