IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v18y2015i4p339-348.html
   My bibliography  Save this article

Reputation Dynamics in Networks: Application to Cyber Security of Wind Farms

Author

Listed:
  • Nathan Trantham
  • Alfredo Garcia

Abstract

Wind power is becoming an increasingly important technology for electric power generation in many power systems around the world. A typical wind farm consists of a relatively large number of turbines under some form of decentralized control. In this context, a cyber‐attack to wind power infrastructure may not only cause immediate physical damage to the facility in question, but may also threaten the stability of the power system in which this facility operates. In this paper, we present a novel distributed algorithm aimed at detecting cyber‐attacks in a wind farm. The cyber‐attacks considered take the form of adversarial manipulation of different turbine‐specific control logic parameters. The proposed algorithm relies on the operational dynamics specific to wind farms namely that turbines that are relatively close are subject to similar wind patterns and hence must be in similar control “states” most of the time. This can be seen as a “wisdom of the crowd” effect: the “true” state is the state of the majority of turbines in physical proximity when only a few have been compromised. In the proposed algorithm, each turbine in the farm periodically shares information regarding their own control “state” with neighboring turbines through a dedicated wireless channel. We test the performance of the proposed algorithm in a simulation test‐bed based on Denmark's Horns Rev wind farm. The results indicate that iterative reputation or trust re‐allocation enables a distributed identification of affected turbines under a wide array of cyber‐attack scenarios.

Suggested Citation

  • Nathan Trantham & Alfredo Garcia, 2015. "Reputation Dynamics in Networks: Application to Cyber Security of Wind Farms," Systems Engineering, John Wiley & Sons, vol. 18(4), pages 339-348, July.
  • Handle: RePEc:wly:syseng:v:18:y:2015:i:4:p:339-348
    DOI: 10.1002/sys.21307
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21307
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rick A. Jones & Barry Horowitz, 2012. "A System‐Aware Cyber Security architecture," Systems Engineering, John Wiley & Sons, vol. 15(2), pages 225-240, June.
    2. Charlotte Bay Hasager & Leif Rasmussen & Alfredo Peña & Leo E. Jensen & Pierre-Elouan Réthoré, 2013. "Wind Farm Wake: The Horns Rev Photo Case," Energies, MDPI, vol. 6(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    2. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    3. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    4. Charlotte Bay Hasager & Nicolai Gayle Nygaard & Patrick J. H. Volker & Ioanna Karagali & Søren Juhl Andersen & Jake Badger, 2017. "Wind Farm Wake: The 2016 Horns Rev Photo Case," Energies, MDPI, vol. 10(3), pages 1-24, March.
    5. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    6. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
    7. Charlotte Bay Hasager & Nicolai Gayle Nygaard & Gregory S. Poulos, 2023. "Wind Farm Blockage Revealed by Fog: The 2018 Horns Rev Photo Case," Energies, MDPI, vol. 16(24), pages 1-19, December.
    8. Bukurije Hoxha & Igor K. Shesho & Risto V. Filkoski, 2022. "Analysis of Wind Turbine Distances Using a Novel Techno-Spatial Approach in Complex Wind Farm Terrains," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    9. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    10. Barry M. Horowitz & Katherine M. Pierce, 2013. "The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems," Systems Engineering, John Wiley & Sons, vol. 16(4), pages 401-412, December.
    11. Davide Astolfi & Fabrizio De Caro & Alfredo Vaccaro, 2023. "Characterizing the Wake Effects on Wind Power Generator Operation by Data-Driven Techniques," Energies, MDPI, vol. 16(15), pages 1-19, August.
    12. Jamieson Gump & Thomas Mazzuchi & Shahram Sarkani, 2017. "An Architecture for Agile Systems Engineering of Secure Commercial Off‐the‐Shelf Mobile Communications," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 71-91, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:18:y:2015:i:4:p:339-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.