IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5818-d1211119.html
   My bibliography  Save this article

Characterizing the Wake Effects on Wind Power Generator Operation by Data-Driven Techniques

Author

Listed:
  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Fabrizio De Caro

    (Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Alfredo Vaccaro

    (Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy)

Abstract

Wakes between neighboring wind turbines are a significant source of energy loss in wind farm operations. Extensive research has been conducted to analyze and understand wind turbine wakes, ranging from aerodynamic descriptions to advanced control strategies. However, there is a relatively overlooked research area focused on characterizing real-world wind farm operations under wake conditions using Supervisory Control And Data Acquisition (SCADA) parameters. This study aims to address this gap by presenting a detailed discussion based on SCADA data analysis from a real-world test case. The analysis focuses on two selected wind turbines within an onshore wind farm operating under wake conditions. Operation curves and data-driven methods are utilized to describe the turbines’ performance. Particularly, the analysis of the operation curves reveals that a wind turbine operating within a wake experiences reduced power production not only due to the velocity deficit but also due to increased turbulence intensity caused by the wake. This effect is particularly prominent during partial load operation when the rotational speed saturates. The turbulence intensity, manifested in the variability of rotational speed and blade pitch, emerges as the crucial factor determining the extent of wake-induced power loss. The findings indicate that turbulence intensity is strongly correlated with the proximity of the wind direction to the center of the wake sector. However, it is important to consider that these two factors may convey slightly different information, possibly influenced by terrain effects. Therefore, both turbulence intensity and wind direction should be taken into account to accurately describe the behavior of wind turbines operating within wakes.

Suggested Citation

  • Davide Astolfi & Fabrizio De Caro & Alfredo Vaccaro, 2023. "Characterizing the Wake Effects on Wind Power Generator Operation by Data-Driven Techniques," Energies, MDPI, vol. 16(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5818-:d:1211119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    2. Siniscalchi-Minna, Sara & Bianchi, Fernando D. & De-Prada-Gil, Mikel & Ocampo-Martinez, Carlos, 2019. "A wind farm control strategy for power reserve maximization," Renewable Energy, Elsevier, vol. 131(C), pages 37-44.
    3. Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
    4. Charlotte Bay Hasager & Leif Rasmussen & Alfredo Peña & Leo E. Jensen & Pierre-Elouan Réthoré, 2013. "Wind Farm Wake: The Horns Rev Photo Case," Energies, MDPI, vol. 6(2), pages 1-21, February.
    5. Zhang, Yi & Li, Zhaobin & Liu, Xiaohao & Sotiropoulos, Fotis & Yang, Xiaolei, 2023. "Turbulence in waked wind turbine wakes: Similarity and empirical formulae," Renewable Energy, Elsevier, vol. 209(C), pages 27-41.
    6. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
    7. Matthew Cole & David Campos-Gaona & Adam Stock & Marcel Nedd, 2023. "A Critical Review of Current and Future Options for Wind Farm Participation in Ancillary Service Provision," Energies, MDPI, vol. 16(3), pages 1-18, January.
    8. Arslan Salim Dar & Fernando Porté-Agel, 2022. "An Analytical Model for Wind Turbine Wakes under Pressure Gradient," Energies, MDPI, vol. 15(15), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Roetzer & Xingjie Li & John Hall, 2024. "Review of Data-Driven Models in Wind Energy: Demonstration of Blade Twist Optimization Based on Aerodynamic Loads," Energies, MDPI, vol. 17(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Bay Hasager & Nicolai Gayle Nygaard & Patrick J. H. Volker & Ioanna Karagali & Søren Juhl Andersen & Jake Badger, 2017. "Wind Farm Wake: The 2016 Horns Rev Photo Case," Energies, MDPI, vol. 10(3), pages 1-24, March.
    2. Dara Vahidi & Fernando Porté-Agel, 2022. "A New Streamwise Scaling for Wind Turbine Wake Modeling in the Atmospheric Boundary Layer," Energies, MDPI, vol. 15(24), pages 1-18, December.
    3. Barlas, Emre & Wu, Ka Ling & Zhu, Wei Jun & Porté-Agel, Fernando & Shen, Wen Zhong, 2018. "Variability of wind turbine noise over a diurnal cycle," Renewable Energy, Elsevier, vol. 126(C), pages 791-800.
    4. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
    5. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
    6. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    7. Carolina G. Marcelino & João V. C. Avancini & Carla A. D. M. Delgado & Elizabeth F. Wanner & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    8. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    10. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    11. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    12. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    13. Shih-Chieh Liao & Shih-Chieh Chang & Tsung-Chi Cheng, 2021. "Managing the Volatility Risk of Renewable Energy: Index Insurance for Offshore Wind Farms in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    14. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    15. Jiufa Cao & Weijun Zhu & Xinbo Wu & Tongguang Wang & Haoran Xu, 2018. "An Aero-acoustic Noise Distribution Prediction Methodology for Offshore Wind Farms," Energies, MDPI, vol. 12(1), pages 1-16, December.
    16. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    17. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    18. Brown, S.A. & Ransley, E.J. & Greaves, D.M., 2020. "Developing a coupled turbine thrust methodology for floating tidal stream concepts: Verification under prescribed motion," Renewable Energy, Elsevier, vol. 147(P1), pages 529-540.
    19. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    20. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5818-:d:1211119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.