IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021950.html
   My bibliography  Save this article

Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning

Author

Listed:
  • Wang, Qiulei
  • Ti, Zilong
  • Yang, Shanghui
  • Yang, Kun
  • Wang, Jiaji
  • Deng, Xiaowei

Abstract

With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations, struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning, PHOENIX (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.

Suggested Citation

  • Wang, Qiulei & Ti, Zilong & Yang, Shanghui & Yang, Kun & Wang, Jiaji & Deng, Xiaowei, 2025. "Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021950
    DOI: 10.1016/j.apenergy.2024.124812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.