IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i6p1096-1110.html
   My bibliography  Save this article

A framework for the assessment of qualitative and quantitative sustainable development of groundwater system

Author

Listed:
  • Hamid Kardan Moghaddam
  • Mohammad Ebrahim Banihabib
  • Saman Javadi
  • Timothy O. Randhir

Abstract

The groundwater mitigation issues and moving toward sustainable quality and quantity conditions of the aquifers are primary water resources management objectives in arid and semi‐arid regions. A framework is required to assess groundwater restoration strategies' impacts on the aquifer's qualitative and quantitative sustainability. In this study, two new indices are introduced to evaluate the state of aquifer sustainability. The aquifer quantity restoration index was determined by using the results of the MODFLOW, considering the differences between the simulated and the desired water levels and the storage volumes for restoration scenarios, and the percentage of obtaining the desired level at the end of the simulated period. The aquifer quality restoration index was defined based on the DRASTIC‐LU aquifer vulnerability and the percentage of the desired total dissolved solids (TDS) goals at the end of the simulated period using the Bayesian networks model. Six restoration groundwater scenarios in 10 years were assessed to examine both proposed indices. Scenarios are comprised of a one to 3.5% reduction in agriculture groundwater withdrawal. The aquifer quantitative restoration index resulting from the MODFLOW simulation indicated that 2.5% of the decrease in groundwater withdrawal satisfied the aquifer's sustainability. Furthermore, the qualitative sustainability index showed that the reduction in groundwater withdrawal has enormous impacts on the aquifer's central area and marginal parts, where the groundwater is dramatically over‐exploited. Indices proposed can be utilized for the assessment of achieving sustainable management in groundwater by restoration scenarios.

Suggested Citation

  • Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:6:p:1096-1110
    DOI: 10.1002/sd.2205
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2205
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zorica Srdjevic & Bojan Srdjevic, 2017. "An Extension of the Sustainability Index Definition in Water Resources Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1695-1712, March.
    2. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.
    3. Henrique Chaves & Suzana Alipaz, 2007. "An Integrated Indicator Based on Basin Hydrology, Environment, Life, and Policy: The Watershed Sustainability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 883-895, May.
    4. Claudio Alimonti & Mara Lombardi, 2015. "Reliability Analysis for Preliminary Forecasts of Hydrogeological Unit Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3771-3785, August.
    5. Daeryong Park & Myoung-Jin Um, 2018. "Sustainability Index Evaluation of the Rainwater Harvesting System in Six US Urban Cities," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    6. R. Mazza & F. La Vigna & C. Alimonti, 2014. "Evaluating the Available Regional Groundwater Resources Using the Distributed Hydrogeological Budget," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 749-765, February.
    7. Hamid Safavi & Mehrdad Esfahani & Ahmad Zamani, 2014. "Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1671-1688, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Castro-Pardo, Mónica & Cabello, José Manuel & Martín, José María & Ruiz, Francisco, 2023. "A multi reference point based index to assess and monitor European water policies from a sustainability approach," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung & Kamal Ahmed & Young Hoon Song, 2018. "Development of Climate-Based Index for Hydrologic Hazard Susceptibility," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    5. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    6. S. E. Dickson & C. J. Schuster-Wallace & J. J. Newton, 2016. "Water Security Assessment Indicators: The Rural Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1567-1604, March.
    7. Xi Yang & Xingwei Chen, 2021. "Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8047-8061, May.
    8. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.
    9. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    10. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    11. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    12. Wei Shen & Zhicheng Zheng & Yaochen Qin & Yang Li, 2020. "Spatiotemporal Characteristics and Driving Force of Ecosystem Health in an Important Ecological Function Region in China," IJERPH, MDPI, vol. 17(14), pages 1-19, July.
    13. Kyeung Kim & Hakkwan Kim & Hyunji Lee & Sang-Min Jun & Soonho Hwang & Jung-Hun Song & Moon-Seong Kang, 2021. "Development and Assessment of Watershed Management Indicators Using the Budyko Framework Parameter," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    14. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.
    15. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    16. Junfei Chen & Menghua Deng & Lu Xia & Huimin Wang, 2017. "Risk Assessment of Drought, Based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    17. Mika Marttunen & Jyri Mustajoki & Suvi Sojamo & Lauri Ahopelto & Marko Keskinen, 2019. "A Framework for Assessing Water Security and the Water–Energy–Food Nexus—The Case of Finland," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    18. Agustí Pérez-Foguet & Ricard Giné Garriga, 2011. "Analyzing Water Poverty in Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3595-3612, November.
    19. Danuta Grosbois & Ryan Plummer, 2015. "Problematizing Water Vulnerability Indices at a Local Level: a Critical Review and Proposed Solution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5015-5035, November.
    20. Matthew Yarrow & Antonio Tironi & Alejandro Ramírez & Víctor Marín, 2008. "An Applied Assessment Model to Evaluate the Socioeconomic Impact of Water Quality Regulations in Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1531-1543, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:6:p:1096-1110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.