IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i6p1671-1688.html
   My bibliography  Save this article

Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran

Author

Listed:
  • Hamid Safavi
  • Mehrdad Esfahani
  • Ahmad Zamani

Abstract

Drought is an extended period of deficient precipitation that causes damage to crops and reducing their performance, causes temporary scarcity of water for human/livestock consumption. Over the years, various indices have been proposed to identify onset, characterize and quantify the attributes of meteorological, hydrological and agricultural drought by various researchers. Because of the spatial and temporal variability and multiple impacts of drought, it is necessary to develop an integrated index for assessment of vulnerability of this natural phenomenon. The aim of this paper is presenting an integrated index for assessment of vulnerability to drought using multiple factors which includes hydrological, meteorological, land use and other factors. Spatial information of various factors was categorized in to various sub-classes and maps were prepared in spatial domain using Geographic Information System (GIS). This study has been carried out in the Zayandehrood River basin located in west-central Iran with semi-arid region. Due to continue droughts at recent decade, this area has been chosen as a case study. The long-term climate data (1991–2011) used for assessment. The results show that Zayandehrood River basin has experienced 11 dry years, 4 normal years, and 6 wet years in the 21 years. The results have been validated with intensive field surveys. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Hamid Safavi & Mehrdad Esfahani & Ahmad Zamani, 2014. "Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1671-1688, April.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:6:p:1671-1688
    DOI: 10.1007/s11269-014-0576-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0576-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0576-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swati Pandey & A. Pandey & M. Nathawat & Manoj Kumar & N. Mahanti, 2012. "Drought hazard assessment using geoinformatics over parts of Chotanagpur plateau region, Jharkhand, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 279-303, September.
    2. Rajendra Pandey & Ashish Pandey & Ravi Galkate & Hi-Ryong Byun & Bimal Mal, 2010. "Integrating Hydro-Meteorological and Physiographic Factors for Assessment of Vulnerability to Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4199-4217, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Chen & Menghua Deng & Lu Xia & Huimin Wang, 2017. "Risk Assessment of Drought, Based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    2. Kanwal, Vinita & Sirohi, Smita & Chand, Prem & Thakur, Arti, 2021. "Drought, Hunger and Malnutrition: Spatial and Socio-Economic Variations in the Desert State of India," 2021 Conference, August 17-31, 2021, Virtual 315248, International Association of Agricultural Economists.
    3. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    4. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    5. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    6. Kavina S. Dayal & Ravinesh C. Deo & Armando A. Apan, 2018. "Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 823-847, September.
    7. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Saowanit Prabnakorn & Shreedhar Maskey & F. X. Suryadi & Charlotte Fraiture, 2019. "Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 891-911, June.
    10. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    11. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    2. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.
    3. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    4. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    5. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    6. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    7. T. Thomas & R. K. Jaiswal & Ravi Galkate & P. C. Nayak & N. C. Ghosh, 2016. "Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1627-1652, April.
    8. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.
    9. Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra, 2018. "Characteristics of meteorological droughts in northwestern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 561-582, November.
    10. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.
    11. Soyeon Lim & Seungyub Lee & Donghwi Jung, 2021. "Identifying the Drought Impact Factors and Developing Drought Scenarios Using the DSD Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4809-4823, November.
    12. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    13. Hao Wu & Hui Qian & Jie Chen & Chenchen Huo, 2017. "Assessment of Agricultural Drought Vulnerability in the Guanzhong Plain, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1557-1574, March.
    14. Jenq-Tzong Shiau & Ya-Yi Hsiao, 2012. "Water-deficit-based drought risk assessments in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 237-257, October.
    15. Vinit Jain & R. Pandey & Manoj Jain, 2015. "Spatio-temporal assessment of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 443-469, March.
    16. Jeewanthi Sirisena & Denie Augustijn & Aftab Nazeer & Janaka Bamunawala, 2022. "Use of Remote-Sensing-Based Global Products for Agricultural Drought Assessment in the Narmada Basin, India," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    17. Jiansheng Wu & Xin Lin & Meijuan Wang & Jian Peng & Yuanjie Tu, 2017. "Assessing Agricultural Drought Vulnerability by a VSD Model: A Case Study in Yunnan Province, China," Sustainability, MDPI, vol. 9(6), pages 1-16, May.
    18. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    19. Saowanit Prabnakorn & Shreedhar Maskey & F. X. Suryadi & Charlotte Fraiture, 2019. "Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 891-911, June.
    20. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:6:p:1671-1688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.