IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10929-d904330.html
   My bibliography  Save this article

Spatiotemporal Heterogeneity and Driving Factors of Water Resource and Environment Carrying Capacity under High-Quality Economic Development in China

Author

Listed:
  • Qian Zhang

    (Business School, Hohai University, Nanjing 211100, China)

  • Juqin Shen

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
    Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China)

Abstract

Rapid economic growth and social development in China have led to serious water pollution problems and water resource shortages, limiting the sustainable development that could support both the socio-economy and water resources carrying capacity (WRECC). However, the spatial heterogeneity and evolutionary characteristics of the coordination between the WRECC and economic development have not been adequately explored in China. In this study, we developed the support and pressure indicators of China’s 30 provinces and then analyzed the spatiotemporal distribution and evolution characteristics of their WRECC by using the geographically and temporally weighted regression (GTWR) model. The main findings are shown in the following: (i) From a temporal perspective, there has been an overall upward trend in the WRECC to support human activities; however, the WRECC level is not high. Approximately 63.7% of provinces remain in an overloaded state, indicating that the support indicator of most provinces is smaller than the pressure indicator imposed by human social activities. (ii) There are significant spatial differences in the WRECC indicators across provinces. Provinces with low-level WRECCs are concentrated in central China but decrease significantly from the country’s borders to its center. Eastern regions have a medium-level of WRECC with the greatest degree of regional difference, while western regions have a high-level of WRECC with the smallest degree of regional difference. The variation of WRECC is attributed to within-group differences in the three geographical regions in China. (iii) The factors that significantly impact the WRECC include population density, gross domestic product (GDP), temperature, urbanization, the added value of tertiary industry within the GDP, and R&D expenditures. GDP and R&D expenditures positively impact the WRECC, while the other four factors have different influences on the WRECC. (iv) The spatial distributions of driving factors show significant aggregation characteristics, with decreasing trends from the eastern to western regions and from the southern to northern regions. These findings present a comprehensive understanding of the current WRECC in China’s provinces which can be used as a reference for realizing environmentally sustainable water development strategies under high-quality economic development.

Suggested Citation

  • Qian Zhang & Juqin Shen, 2022. "Spatiotemporal Heterogeneity and Driving Factors of Water Resource and Environment Carrying Capacity under High-Quality Economic Development in China," IJERPH, MDPI, vol. 19(17), pages 1-21, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10929-:d:904330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Huaxi Yuan & Yidai Feng & Jay Lee & Haimeng Liu, 2020. "The Spatio-Temporal Heterogeneity of Financial Agglomeration on Green Development in China Cities Using GTWR Model," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    3. Henrique Chaves & Suzana Alipaz, 2007. "An Integrated Indicator Based on Basin Hydrology, Environment, Life, and Policy: The Watershed Sustainability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 883-895, May.
    4. Feng, Li-Hua & Zhang, Xing-Cai & Luo, Gao-Yuan, 2008. "Application of system dynamics in analyzing the carrying capacity of water resources in Yiwu City, China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 269-278.
    5. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nairong Tan & Xiaoying Chang & Tao Ma, 2023. "Study on Production–Living–Ecological Function Accounting and Management in China," Land, MDPI, vol. 12(6), pages 1-23, May.
    2. Zuoming Zhang & Xiaoying Wan & Kaixi Sheng & Hanyue Sun & Lei Jia & Jiachao Peng, 2023. "Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data," Sustainability, MDPI, vol. 15(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    2. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    3. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    4. Alina Kulczyk-Dynowska & Agnieszka Stacherzak, 2022. "The Impact of a City on Its Environment: The Prism of Demography and Selected Environmental and Technical Aspects Based on the Case of Major Lower Silesian Cities," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    5. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    6. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    7. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    8. S. E. Dickson & C. J. Schuster-Wallace & J. J. Newton, 2016. "Water Security Assessment Indicators: The Rural Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1567-1604, March.
    9. Dinkelman, Taryn & Schulhofer-Wohl, Sam, 2015. "Migration, congestion externalities, and the evaluation of spatial investments," Journal of Development Economics, Elsevier, vol. 114(C), pages 189-202.
    10. Mari-Isabella Stan, 2022. "The impact of the pandemic crisis on employment in the context of urbanization," Technium Social Sciences Journal, Technium Science, vol. 33(1), pages 492-505, July.
    11. Zhen Yang & Jun Lei & Jian-Gang Li, 2019. "Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    12. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    13. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    14. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    15. Ulep, Valerie Gilbert T. & Ortiz, Danica Aisa P. & Go, John Juliard & Duante, Charmaine & Gonzales, Rosa C. & Mendoza, Laurita R. & Reyes, Clarissa & Elgo, Frances Rose & Aldeon, Melanie P., 2012. "Inequities in Noncommunicable Diseases," Discussion Papers DP 2012-04, Philippine Institute for Development Studies.
    16. Xi Yang & Xingwei Chen, 2021. "Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8047-8061, May.
    17. Rudke, Anderson Paulo & Martins, Jorge Alberto & dos Santos, Alex Mota & Silva, Witan Pereira & Caldana, Nathan F. da Silva & Souza, Vinicius A.S. & Alves, Ronaldo Adriano & de Almeida Albuquerque, Ta, 2021. "Spatial and socio-economic analysis of public transport systems in large cities: A case study for Belo Horizonte, Brazil," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    19. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    20. Chuxin Hu & Binglin Liu & Zhiqiang Yan & Chunxiao Ma, 2024. "Construction and Empirical Research of an Evaluation System for High-Quality Development of Small Towns in Guangxi Under the New Development Concept," Land, MDPI, vol. 13(11), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10929-:d:904330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.