IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i4p705-722.html
   My bibliography  Save this article

Outbreak‐Based Giardia Dose–Response Model Using Bayesian Hierarchical Markov Chain Monte Carlo Analysis

Author

Listed:
  • Tucker R. Burch

Abstract

Giardia is a zoonotic gastrointestinal parasite responsible for a substantial global public health burden, and quantitative microbial risk assessment (QMRA) is often used to forecast and manage this burden. QMRA requires dose–response models to extrapolate available dose–response data, but the existing model for Giardia ignores valuable dose–response information, particularly data from several well‐documented waterborne outbreaks of giardiasis. The current study updates Giardia dose–response modeling by synthesizing all available data from outbreaks and experimental studies using a Bayesian random effects dose–response model. For outbreaks, mean doses (D) and the degree of spatial and temporal aggregation among cysts were estimated using exposure assessment implemented via two‐dimensional Monte Carlo simulation, while potential overreporting of outbreak cases was handled using published overreporting factors and censored binomial regression. Parameter estimation was by Markov chain Monte Carlo simulation and indicated that a typical exponential dose–response parameter for Giardia is r = 1.6 × 10−2 [3.7 × 10−3, 6.2 × 10−2] (posterior median [95% credible interval]), while a typical morbidity ratio is m = 3.8 × 10−1 [2.3 × 10−1, 5.5 × 10−1]. Corresponding (logistic‐scale) variance components were σr = 5.2 × 10−1 [1.1 × 10−1, 9.6 × 10−1] and σm = 9.3 × 10−1 [7.0 × 10−2, 2.8 × 100], indicating substantial variation in the Giardia dose–response relationship. Compared to the existing Giardia dose–response model, the current study provides more representative estimation of uncertainty in r and novel quantification of its natural variability. Several options for incorporating variability in r (and m) into QMRA predictions are discussed, including incorporation via Monte Carlo simulation as well as evaluation of the current study's model using the approximate beta‐Poisson.

Suggested Citation

  • Tucker R. Burch, 2020. "Outbreak‐Based Giardia Dose–Response Model Using Bayesian Hierarchical Markov Chain Monte Carlo Analysis," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 705-722, April.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:4:p:705-722
    DOI: 10.1111/risa.13436
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13436
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kent, G.P. & Greenspan, J.R. & Herndon, J.L. & Mofenson, L.M. & Harris, J.-A.S. & Eng, T.R. & Waskin, H.A., 1988. "Epidemic giardiasis caused by a contaminated public water supply," American Journal of Public Health, American Public Health Association, vol. 78(2), pages 139-143.
    2. Rose, J.B. & Haas, C.N. & Regli, S., 1991. "Risk assessment and control of waterborne giardiasis," American Journal of Public Health, American Public Health Association, vol. 81(6), pages 709-713.
    3. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    4. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    5. Tucker Burch, 2019. "Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 599-615, March.
    6. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    2. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    3. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    4. Tucker Burch, 2019. "Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 599-615, March.
    5. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.
    6. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    7. Régis Pouillot & Benoit Garin & Noro Ravaonindrina & Kane Diop & Mahery Ratsitorahina & Domoina Ramanantsoa & Jocelyne Rocourt, 2012. "A Risk Assessment of Campylobacteriosis and Salmonellosis Linked to Chicken Meals Prepared in Households in Dakar, Senegal," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1798-1819, October.
    8. K. Hoelzer & Y. Chen & S. Dennis & P. Evans & R. Pouillot & B. J. Silk & I. Walls, 2013. "New Data, Strategies, and Insights for Listeria monocytogenes Dose‐Response Models: Summary of an Interagency Workshop, 2011," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1568-1581, September.
    9. A. H. Havelaar & A. N. Swart, 2014. "Impact of Acquired Immunity and Dose‐Dependent Probability of Illness on Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1807-1819, October.
    10. Charles N. Haas, 2002. "On the Risk of Mortality to Primates Exposed to Anthrax Spores," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 189-193, April.
    11. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    12. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    13. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
    14. Gin Nam Sze‐To & Christopher Y. H. Chao, 2011. "Use of Risk Assessment and Likelihood Estimation to Analyze Spatial Distribution Pattern of Respiratory Infection Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 351-369, March.
    15. Yin Huang & Charles N. Haas, 2009. "Time‐Dose‐Response Models for Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 648-661, May.
    16. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    17. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    18. Amie Adkin & Neil Donaldson & Louise Kelly, 2013. "A Quantitative Assessment of the Prion Risk Associated with Wastewater from Carcass‐Handling Facilities," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1212-1227, July.
    19. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    20. Nicole C. J. Brienen & Aura Timen & Jacco Wallinga & Jim E. Van Steenbergen & Peter F. M. Teunis, 2010. "The Effect of Mask Use on the Spread of Influenza During a Pandemic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1210-1218, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:4:p:705-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.