Author
Listed:
- P. F. M. Teunis
- A. H. Havelaar
Abstract
The choice of a dose‐response model is decisive for the outcome of quantitative risk assessment. Single‐hit models have played a prominent role in dose‐response assessment for pathogenic microorganisms, since their introduction. Hit theory models are based on a few simple concepts that are attractive for their clarity and plausibility. These models, in particular the Beta Poisson model, are used for extrapolation of experimental dose‐response data to low doses, as are often present in drinking water or food products. Unfortunately, the Beta Poisson model, as it is used throughout the microbial risk literature, is an approximation whose validity is not widely known. The exact functional relation is numerically complex, especially for use in optimization or uncertainty analysis. Here it is shown that although the discrepancy between the Beta Poisson formula and the exact function is not very large for many data sets, the differences are greatest at low doses—the region of interest for many risk applications. Errors may become very large, however, in the results of uncertainty analysis, or when the data contain little low‐dose information. One striking property of the exact single‐hit model is that it has a maximum risk curve, limiting the upper confidence level of the dose‐response relation. This is due to the fact that the risk cannot exceed the probability of exposure, a property that is not retained in the Beta Poisson approximation. This maximum possible response curve is important for uncertainty analysis, and for risk assessment of pathogens with unknown properties.
Suggested Citation
P. F. M. Teunis & A. H. Havelaar, 2000.
"The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model,"
Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
Handle:
RePEc:wly:riskan:v:20:y:2000:i:4:p:513-520
DOI: 10.1111/0272-4332.204048
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:20:y:2000:i:4:p:513-520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.