IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i4p901-920.html
   My bibliography  Save this article

What Comes After the Prestige Disaster? An Entropic Approach to Modeling the Recurrence of Major Oil Tanker Spills in Galicia

Author

Listed:
  • Alberto Solana‐Ortega
  • Vicente Solana

Abstract

A methodology is presented to investigate the recurrence of extraordinary events. The approach is fully general and complies with a canon of inference establishing a set of basic rationality requirements scientific reasoning should satisfy. In particular, we apply it to model the interarrival time between disastrous oil spills in the Galician coast in the northwest of Spain, one of the greatest risk areas in the world, as confirmed by the Prestige accident of November 2002. We formulate the problem within the logical probability framework, using plausible logic languages with observations to allow the appropriate expression of evidences. Therein, inference is regarded as the joint selection of a pair of reference and inferred probability distributions, which better encode the knowledge about potential times between incidents provided by the available evidences and other higher‐order information at hand. To solve it, we employ the REF relative entropy method with fractile constraints. Next, we analyze the variability of the joint entropic solution, as knowledge that a time has elapsed since the last recorded spill is added, by conditioning the evidences. Attention is paid to the variability of two representative parameters: the average reference recurrence time and an inferred characteristic probability fractile for the time to an event. In contrast with classical results, the salient consequence is their nonconstancy with the elapsed time and the appearance of a variability pattern indicating an observational memory, even under the assumption of one‐parameter exponential models, traditionally regarded as memoryless. Tanker accidentality is therefore dynamic, changing as time goes on with no further accidents. Generality of the methodology entails that identical conclusions would apply to hazard modeling of any other kind of extraordinary phenomena. This should be considered in risk assessment and management.

Suggested Citation

  • Alberto Solana‐Ortega & Vicente Solana, 2007. "What Comes After the Prestige Disaster? An Entropic Approach to Modeling the Recurrence of Major Oil Tanker Spills in Galicia," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 901-920, August.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:4:p:901-920
    DOI: 10.1111/j.1539-6924.2007.00931.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2007.00931.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2007.00931.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason R. W. Merrick & Rene Van Dorp, 2006. "Speaking the Truth in Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 223-237, February.
    2. Timothy G. Fowler & Eirik Sørgård, 2000. "Modeling Ship Transportation Risk," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 225-244, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    2. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    3. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    4. Christopher S Decker & William Corcoran & David T Flynn, 2011. "Shipwrecks on the Great Lakes and the Lake Carriers Association," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(4), pages 450-469.
    5. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    6. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    7. Puisa, Romanas & Montewka, Jakub & Krata, Przemyslaw, 2023. "A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. J Montewka & P Krata & F Goerlandt & A Mazaheri & P Kujala, 2011. "Marine traffic risk modelling – an innovative approach and a case study," Journal of Risk and Reliability, , vol. 225(3), pages 307-322, September.
    9. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Yue Wu & Ronald P. Pelot & Casey Hilliard, 2009. "The Influence of Weather Conditions on the Relative Incident Rate of Fishing Vessels," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 985-999, July.
    12. Michele Bristow & Liping Fang & Keith W. Hipel, 2012. "System of Systems Engineering and Risk Management of Extreme Events: Concepts and Case Study," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1935-1955, November.
    13. Jason R. W. Merrick & John R. Harrald, 2007. "Making Decisions About Safety in US Ports and Waterways," Interfaces, INFORMS, vol. 37(3), pages 240-252, June.
    14. J. Dorp & Jason Merrick, 2011. "On a risk management analysis of oil spill risk using maritime transportation system simulation," Annals of Operations Research, Springer, vol. 187(1), pages 249-277, July.
    15. Özgecan S. Ulusçu & Birnur Özbaş & Tayfur Altıok & İlhan Or, 2009. "Risk Analysis of the Vessel Traffic in the Strait of Istanbul," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1454-1472, October.
    16. Jason R. W. Merrick & J. Rene Van Dorp & Varun Dinesh, 2005. "Assessing Uncertainty in Simulation‐Based Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 731-743, June.
    17. Jason R. W. Merrick & Rene Van Dorp, 2006. "Speaking the Truth in Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 223-237, February.
    18. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Liye Zhang & Hua Wang & Qiang Meng & Hongbin Xie, 2019. "Ship accident consequences and contributing factors analyses using ship accident investigation reports," Journal of Risk and Reliability, , vol. 233(1), pages 35-47, February.
    20. Saurabh Bansal & Yaroslav Rosokha, 2018. "Impact of Compound and Reduced Specification on Valuation of Projects with Multiple Risks," Decision Analysis, INFORMS, vol. 15(1), pages 27-46, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:4:p:901-920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.