IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i3p731-743.html
   My bibliography  Save this article

Assessing Uncertainty in Simulation‐Based Maritime Risk Assessment

Author

Listed:
  • Jason R. W. Merrick
  • J. Rene Van Dorp
  • Varun Dinesh

Abstract

Recent work in the assessment of risk in maritime transportation systems has used simulation‐based probabilistic risk assessment techniques. In the Prince William Sound and Washington State Ferries risk assessments, the studies’ recommendations were backed up by estimates of their impact made using such techniques and all recommendations were implemented. However, the level of uncertainty about these estimates was not available, leaving the decisionmakers unsure whether the evidence was sufficient to assess specific risks and benefits. The first step toward assessing the impact of uncertainty in maritime risk assessments is to model the uncertainty in the simulation models used. In this article, a study of the impact of proposed ferry service expansions in San Francisco Bay is used as a case study to demonstrate the use of Bayesian simulation techniques to propagate uncertainty throughout the analysis. The conclusions drawn in the original study are shown, in this case, to be robust to the inherent uncertainties. The main intellectual merit of this work is the development of Bayesian simulation technique to model uncertainty in the assessment of maritime risk. However, Bayesian simulations have been implemented only as theoretical demonstrations. Their use in a large, complex system may be considered state of the art in the field of computational sciences.

Suggested Citation

  • Jason R. W. Merrick & J. Rene Van Dorp & Varun Dinesh, 2005. "Assessing Uncertainty in Simulation‐Based Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 731-743, June.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:3:p:731-743
    DOI: 10.1111/j.1539-6924.2005.00616.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00616.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00616.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan R. Van Dorp & Jason R. W. Merrick & John R. Harrald & Thomas A. Mazzuchi & Martha Grabowski, 2001. "A Risk Management Procedure for the Washington State Ferries," Risk Analysis, John Wiley & Sons, vol. 21(1), pages 127-142, February.
    2. Timothy G. Fowler & Eirik Sørgård, 2000. "Modeling Ship Transportation Risk," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 225-244, April.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Stephen E. Chick, 2001. "Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty," Operations Research, INFORMS, vol. 49(5), pages 744-758, October.
    5. Scott Andrews & Frederic H. Murphy & Xiao Pei Wang & Steve Welch, 1996. "Modeling Crude Oil Lightering in Delaware Bay," Interfaces, INFORMS, vol. 26(6), pages 68-78, December.
    6. H. Christopher Frey & David E. Burmaster, 1999. "Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood‐Based Approaches," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 109-130, February.
    7. Jason R. W. Merrick & J. René van Dorp & Thomas Mazzuchi & John R. Harrald & John E. Spahn & Martha Grabowski, 2002. "The Prince William Sound Risk Assessment," Interfaces, INFORMS, vol. 32(6), pages 25-40, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    2. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    3. Jia, Xiaohui & Zhang, Donghui, 2021. "Prediction of maritime logistics service risks applying soft set based association rule: An early warning model," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Allison C. Reilly & Andrea Staid & Michael Gao & Seth D. Guikema, 2016. "Tutorial: Parallel Computing of Simulation Models for Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1844-1854, October.
    5. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    6. Jason R. W. Merrick & Rene Van Dorp, 2006. "Speaking the Truth in Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 223-237, February.
    7. Jason R. W. Merrick, 2009. "Bayesian Simulation and Decision Analysis: An Expository Survey," Decision Analysis, INFORMS, vol. 6(4), pages 222-238, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason R. W. Merrick & Rene Van Dorp, 2006. "Speaking the Truth in Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 223-237, February.
    2. J. Dorp & Jason Merrick, 2011. "On a risk management analysis of oil spill risk using maritime transportation system simulation," Annals of Operations Research, Springer, vol. 187(1), pages 249-277, July.
    3. Jason R. W. Merrick, 2009. "Bayesian Simulation and Decision Analysis: An Expository Survey," Decision Analysis, INFORMS, vol. 6(4), pages 222-238, December.
    4. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    5. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    6. J Montewka & P Krata & F Goerlandt & A Mazaheri & P Kujala, 2011. "Marine traffic risk modelling – an innovative approach and a case study," Journal of Risk and Reliability, , vol. 225(3), pages 307-322, September.
    7. Jason R. W. Merrick & John R. Harrald, 2007. "Making Decisions About Safety in US Ports and Waterways," Interfaces, INFORMS, vol. 37(3), pages 240-252, June.
    8. Giel Wiel & J. Dorp, 2011. "An oil outflow model for tanker collisions and groundings," Annals of Operations Research, Springer, vol. 187(1), pages 279-304, July.
    9. Özgecan S. Ulusçu & Birnur Özbaş & Tayfur Altıok & İlhan Or, 2009. "Risk Analysis of the Vessel Traffic in the Strait of Istanbul," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1454-1472, October.
    10. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    11. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    12. Jason R. W. Merrick & J. Rene van Dorp & Amita Singh, 2005. "Analysis of Correlated Expert Judgments from Extended Pairwise Comparisons," Decision Analysis, INFORMS, vol. 2(1), pages 17-29, March.
    13. Jason R. W. Merrick & J. René van Dorp & Thomas Mazzuchi & John R. Harrald & John E. Spahn & Martha Grabowski, 2002. "The Prince William Sound Risk Assessment," Interfaces, INFORMS, vol. 32(6), pages 25-40, December.
    14. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    15. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    16. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    17. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    18. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    19. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    20. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:3:p:731-743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.