IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i1p41-49.html
   My bibliography  Save this article

Dose‐Response Model for 13 Strains of Salmonella

Author

Listed:
  • Thomas Oscar

Abstract

Data from a human feeding trial with healthy men were used to develop a dose‐response model for 13 strains of Salmonella and to determine the effects of strain variation on the shape of the dose‐response curve. Dose‐response data for individual strains were fit to a three‐phase linear model to determine minimum, median, and maximum illness doses, which were used to define Pert distributions in a computer simulation model. Pert distributions for illness dose of individual strains were combined in an Excel spreadsheet using a discrete distribution to model strain prevalence. In addition, a discrete distribution was used to model dose groups and thus create a model that simulated human feeding trials. During simulation of the model with @Risk, an illness dose and a dose consumed were randomly assigned to each consumption event in the simulated feeding trial and if the illness dose was greater than the dose consumed then the model predicted no illness, otherwise the model predicted that an illness would occur. To verify the dose‐response model predictions, the original feeding trial was simulated. The dose‐response model predicted a median of 69 (range of 43–101) illnesses compared to 74 in the original trial. Thus, its predictions were in agreement with the data used to develop it. However, predictions of the model are only valid for eggnog, healthy men, and the strains and doses of Salmonella used to develop it. When multiple strains of Salmonella were simulated together, the predicted dose‐response curves were irregular in shape. Thus, the sigmoid shape of dose‐response curves in feeding trials with one strain of Salmonella may not accurately reflect dose response in naturally contaminated food where multiple strains may be present.

Suggested Citation

  • Thomas Oscar, 2004. "Dose‐Response Model for 13 Strains of Salmonella," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 41-49, February.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:41-49
    DOI: 10.1111/j.0272-4332.2004.00410.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00410.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00410.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Hoelzer & Y. Chen & S. Dennis & P. Evans & R. Pouillot & B. J. Silk & I. Walls, 2013. "New Data, Strategies, and Insights for Listeria monocytogenes Dose‐Response Models: Summary of an Interagency Workshop, 2011," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1568-1581, September.
    2. A. H. Havelaar & A. N. Swart, 2014. "Impact of Acquired Immunity and Dose‐Dependent Probability of Illness on Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1807-1819, October.
    3. Yin Huang & Charles N. Haas, 2009. "Time‐Dose‐Response Models for Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 648-661, May.
    4. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    5. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    6. Nicole C. J. Brienen & Aura Timen & Jacco Wallinga & Jim E. Van Steenbergen & Peter F. M. Teunis, 2010. "The Effect of Mask Use on the Spread of Influenza During a Pandemic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1210-1218, August.
    7. Arnout R. H. Fischer & Aarieke E. I. De Jong & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2005. "Improving Food Safety in the Domestic Environment: The Need for a Transdisciplinary Approach," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 503-517, June.
    8. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    9. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    10. Tingting Gao & Rong Chen & Yanzheng Liu & Xiaochang C. Wang & Yuyou Li, 2018. "Construction of a Dose–Illness Relationship via Modeling Morbidity and Application to Risk Assessment of Wastewater Reuse," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1672-1684, August.
    11. Régis Pouillot* & Karin Hoelzer & Yuhuan Chen & Sherri B. Dennis, 2015. "Listeria monocytogenes Dose Response Revisited—Incorporating Adjustments for Variability in Strain Virulence and Host Susceptibility," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 90-108, January.
    12. Louis A. Cox & Douglas A. Popken, 2004. "Quantifying Human Health Risks from Virginiamycin Used in Chickens," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 271-288, February.
    13. Sushil B. Tamrakar & Anne Haluska & Charles N. Haas & Timothy A. Bartrand, 2011. "Dose‐Response Model of Coxiella burnetii (Q Fever)," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 120-128, January.
    14. Baloch, Gohram & Gzara, Fatma & Elhedhli, Samir, 2023. "Risk-based allocation of COVID-19 personal protective equipment under supply shortages," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1085-1100.
    15. Hanan Smadi & Jan M. Sargeant, 2013. "Quantitative Risk Assessment of Human Salmonellosis in Canadian Broiler Chicken Breast from Retail to Consumption," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 232-248, February.
    16. Philip J. Schmidt, 2017. "Comment on “Guidelines for Use of the Approximate Beta‐Poisson Dose–Response Model”: Previously Published Guidelines Continue to be Ignored," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 196-200, February.
    17. Kaatje Els Bollaerts & Winy Messens & Laurent Delhalle & Marc Aerts & Yves Van der Stede & Jeroen Dewulf & Sophie Quoilin & Dominiek Maes & Koen Mintiens & Koen Grijspeerdt, 2009. "Development of a Quantitative Microbial Risk Assessment for Human Salmonellosis Through Household Consumption of Fresh Minced Pork Meat in Belgium," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 820-840, June.
    18. Régis Pouillot & Pascal Beaudeau & Jean‐Baptiste Denis & Francis Derouin & AFSSA Cryptosporidium Study Group, 2004. "A Quantitative Risk Assessment of Waterborne Cryptosporidiosis in France Using Second‐Order Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 1-17, February.
    19. James D. Englehardt & Jeff Swartout, 2006. "Predictive Bayesian Microbial Dose‐Response Assessment Based on Suggested Self‐Organization in Primary Illness Response: Cryptosporidium parvum," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 543-554, April.
    20. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.