IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i5p1299-1312.html
   My bibliography  Save this article

Uncertainty Analysis for Computer Model Projections of Hurricane Losses

Author

Listed:
  • Ronald L. Iman
  • Mark E. Johnson
  • Charles C. Watson

Abstract

Projecting losses associated with hurricanes is a complex and difficult undertaking that is wrought with uncertainties. Hurricane Charley, which struck southwest Florida on August 13, 2004, illustrates the uncertainty of forecasting damages from these storms. Due to shifts in the track and the rapid intensification of the storm, real‐time estimates grew from $2 to $3 billion in losses late on August 12 to a peak of $50 billion for a brief time as the storm appeared to be headed for the Tampa Bay area. The storm hit the resort areas of Charlotte Harbor near Punta Gorda and then went on to Orlando in the central part of the state, with early poststorm estimates converging on a damage estimate in the $28 to $31 billion range. Comparable damage to central Florida had not been seen since Hurricane Donna in 1960. The Florida Commission on Hurricane Loss Projection Methodology (FCHLPM) has recognized the role of computer models in projecting losses from hurricanes. The FCHLPM established a professional team to perform onsite (confidential) audits of computer models developed by several different companies in the United States that seek to have their models approved for use in insurance rate filings in Florida. The team's members represent the fields of actuarial science, computer science, meteorology, statistics, and wind and structural engineering. An important part of the auditing process requires uncertainty and sensitivity analyses to be performed with the applicant's proprietary model. To influence future such analyses, an uncertainty and sensitivity analysis has been completed for loss projections arising from use of a Holland B parameter hurricane wind field model. Uncertainty analysis quantifies the expected percentage reduction in the uncertainty of wind speed and loss that is attributable to each of the input variables.

Suggested Citation

  • Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1299-1312
    DOI: 10.1111/j.1539-6924.2005.00674.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00674.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00674.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Iman, 1987. "A Matrix‐Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees," Risk Analysis, John Wiley & Sons, vol. 7(1), pages 21-33, March.
    2. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    3. Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    4. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    5. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    6. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    7. Patricia Born & Randy Dumm & Mark E. Johnson, 2023. "Epistemic uncertainty in catastrophe models—A base level examination," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 26(2), pages 247-269, July.
    8. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    9. Emanuele Borgonovo, 2008. "Sensitivity Analysis of Model Output with Input Constraints: A Generalized Rationale for Local Methods," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 667-680, June.
    10. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    11. Anna Timonina & Stefan Hochrainer‐Stigler & Georg Pflug & Brenden Jongman & Rodrigo Rojas, 2015. "Structured Coupling of Probability Loss Distributions: Assessing Joint Flood Risk in Multiple River Basins," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2102-2119, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    3. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    4. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    6. Guijie Li & Zhenzhou Lu & Longfei Tian & Jia Xu, 2013. "The importance measure on the non-probabilistic reliability index of uncertain structures," Journal of Risk and Reliability, , vol. 227(6), pages 651-661, December.
    7. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    8. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    9. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    10. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    11. Lee, Sang-Hee & Park, Cheol-Min, 2022. "The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study," Ecological Modelling, Elsevier, vol. 464(C).
    12. Shabbir Ahmed Osmani & Foysol Mahmud, 2021. "An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1976-1993, February.
    13. Nicolas A. Menzies & Brian W. Allwood & Anna S. Dean & Pete J. Dodd & Rein M. G. J. Houben & Lyndon P. James & Gwenan M. Knight & Jamilah Meghji & Linh N. Nguyen & Andrea Rachow & Samuel G. Schumacher, 2023. "Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    15. Alan H. Stern, 1993. "Re‐evaluation of the Reference Dose for Methylmercury and Assessment of Current Exposure Levels," Risk Analysis, John Wiley & Sons, vol. 13(3), pages 355-364, June.
    16. Roger Flage & Terje Aven & Piero Baraldi & Enrico Zio, 2012. "An imprecision importance measure for uncertainty representations interpreted as lower and upper probabilities, with special emphasis on possibility theory," Journal of Risk and Reliability, , vol. 226(6), pages 656-665, December.
    17. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    18. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    19. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    20. Gorka Merino & Hilario Murua & Josu Santiago & Haritz Arrizabalaga & Victor Restrepo, 2020. "Characterization, Communication, and Management of Uncertainty in Tuna Fisheries," Sustainability, MDPI, vol. 12(19), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1299-1312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.