IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i2p210-222.html
   My bibliography  Save this article

Moment‐Independent Sensitivity Analysis Using Copula

Author

Listed:
  • Pengfei Wei
  • Zhenzhou Lu
  • Jingwen Song

Abstract

In risk assessment, the moment‐independent sensitivity analysis (SA) technique for reducing the model uncertainty has attracted a great deal of attention from analysts and practitioners. It aims at measuring the relative importance of an individual input, or a set of inputs, in determining the uncertainty of model output by looking at the entire distribution range of model output. In this article, along the lines of Plischke et al., we point out that the original moment‐independent SA index (also called delta index) can also be interpreted as the dependence measure between model output and input variables, and introduce another moment‐independent SA index (called extended delta index) based on copula. Then, nonparametric methods for estimating the delta and extended delta indices are proposed. Both methods need only a set of samples to compute all the indices; thus, they conquer the problem of the “curse of dimensionality.” At last, an analytical test example, a risk assessment model, and the levelE model are employed for comparing the delta and the extended delta indices and testing the two calculation methods. Results show that the delta and the extended delta indices produce the same importance ranking in these three test examples. It is also shown that these two proposed calculation methods dramatically reduce the computational burden.

Suggested Citation

  • Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:2:p:210-222
    DOI: 10.1111/risa.12110
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12110
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    2. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    3. Fermanian, Jean-David & Scaillet, Olivier, 2003. "Nonparametric estimation of copulas for time series," Working Papers unige:41797, University of Geneva, Geneva School of Economics and Management.
    4. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    5. Autin, F. & Le Pennec, E. & Tribouley, K., 2010. "Thresholding methods to estimate copula density," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 200-222, January.
    6. Ronald L. Iman, 1987. "A Matrix‐Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees," Risk Analysis, John Wiley & Sons, vol. 7(1), pages 21-33, March.
    7. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    8. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    9. Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
    10. Weirs, V. Gregory & Kamm, James R. & Swiler, Laura P. & Tarantola, Stefano & Ratto, Marco & Adams, Brian M. & Rider, William J. & Eldred, Michael S., 2012. "Sensitivity analysis techniques applied to a system of hyperbolic conservation laws," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 157-170.
    11. Terje Aven, 2010. "On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 354-360, March.
    12. Dimov, I. & Georgieva, R. & Ostromsky, Tz., 2012. "Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 23-28.
    13. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    14. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    15. Qu, Leming & Yin, Wotao, 2012. "Copula density estimation by total variation penalized likelihood with linear equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 384-398.
    16. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    17. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    3. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    4. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    5. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    6. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    8. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    3. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Uncertainty Importance Analysis Using Parametric Moment Ratio Functions," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 223-234, February.
    4. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    5. Xin Xu & Zhenzhou Lu & Xiaopeng Luo, 2014. "A Stable Approach Based on Asymptotic Space Integration for Moment‐Independent Uncertainty Importance Measure," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 235-251, February.
    6. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    7. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    8. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    9. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    10. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    11. Emanuele Borgonovo, 2008. "Sensitivity Analysis of Model Output with Input Constraints: A Generalized Rationale for Local Methods," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 667-680, June.
    12. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    13. Song, Shufang & Zhou, Tong & Wang, Lu & Kucherenko, Sergei & Lu, Zhenzhou, 2019. "Derivative-based new upper bound of Sobol’ sensitivity measure," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 142-148.
    14. Yishang Zhang & Yongshou Liu & Xufeng Yang & Bin Zhao, 2015. "An efficient Kriging method for global sensitivity of structural reliability analysis with non-probabilistic convex model," Journal of Risk and Reliability, , vol. 229(5), pages 442-455, October.
    15. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    16. Wenbin Ruan & Zhenzhou Lu & Longfei Tian, 2013. "A modified variance-based importance measure and its solution by state dependent parameter," Journal of Risk and Reliability, , vol. 227(1), pages 3-15, February.
    17. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    18. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.
    19. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    20. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:2:p:210-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.