IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v18y1998i6p799-803.html
   My bibliography  Save this article

Presenting Results from Model Based Studies to Decision‐Makers: Can Sensitivity Analysis Be a Defogging Agent?

Author

Listed:
  • Andrea Saltelli
  • Stefano Tarantola
  • Karen Chad

Abstract

The motivation of the present work is to provide an auxiliary tool for the decision‐maker (DM) faced with predictive model uncertainty. The tool is especially suited for the allocation of R&Dresources. When taking decisions under uncertainties, making use of the output from mathematical or computational models, the DM might be helped if the uncertainty in model predictions be decomposed in a quantitative‐rather than qualitativefashion, apportioning uncertainty according to source. This would allow optimal use of resources to reduce the imprecision in the prediction. For complex models, such a decomposition of the uncertainty into constituent elements could be impractical as such, due to the large number of parameters involved. If instead parameters could be grouped into logical subsets, then the analysis could be more useful, also because the decision maker might likely have different perceptions (and degrees of acceptance) for different kinds of uncertainty. For instance, the decomposition in groups could involve one subset of factors for each constituent module of the model; or one set for the weights, and one for the factors in a multicriteria analysis; or phenomenological parameters of the model vs. factors driving the model configuratiodstructure aggregation level, etc.); finally, one might imagine that a partition of the uncertainty could be sought between stochastic (or aleatory) and subjective (or epistemic) uncertainty. The present note shows how to compute rigorous decomposition of the output's variance with grouped parameters, and how this approach may be beneficial for the efficiency and transparency of the analysis.

Suggested Citation

  • Andrea Saltelli & Stefano Tarantola & Karen Chad, 1998. "Presenting Results from Model Based Studies to Decision‐Makers: Can Sensitivity Analysis Be a Defogging Agent?," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 799-803, December.
  • Handle: RePEc:wly:riskan:v:18:y:1998:i:6:p:799-803
    DOI: 10.1111/j.1539-6924.1998.tb01122.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1998.tb01122.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1998.tb01122.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
    2. Jon C. Helton, 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 483-511, August.
    3. Saltelli, A. & Andres, T. H. & Homma, T., 1993. "Sensitivity analysis of model output : An investigation of new techniques," Computational Statistics & Data Analysis, Elsevier, vol. 15(2), pages 211-238, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    2. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    3. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    4. Kimberly M. Thompson, 2002. "Variability and Uncertainty Meet Risk Management and Risk Communication," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 647-654, June.
    5. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    6. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    7. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    8. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    9. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    12. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    13. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Durga Rao Karanki & Hari Shankar Kushwaha & Ajit Kumar Verma & Srividya Ajit, 2009. "Uncertainty Analysis Based on Probability Bounds (P‐Box) Approach in Probabilistic Safety Assessment," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 662-675, May.
    16. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    17. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    18. Kleijnen, J.P.C., 1995. "Sensitivity analysis and related analysis : A survey of statistical techniques," Other publications TiSEM bcf947da-25e3-431d-a1f6-6, Tilburg University, School of Economics and Management.
    19. Neda Vesselinova & Boian S Alexandrov & Michael E Wall, 2016. "Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-20, November.
    20. Terje Aven, 2010. "On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 354-360, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:18:y:1998:i:6:p:799-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.