IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v241y2021ics0925527321002309.html
   My bibliography  Save this article

Impact of deep-tier visibility on effective resilience assessment of supply networks

Author

Listed:
  • Taghizadeh, Elham
  • Venkatachalam, Saravanan
  • Chinnam, Ratna Babu

Abstract

The COVID-19 pandemic further underscored the importance of effectively managing supply chains' resilience, which is particularly important for companies facing complex and global deep-tiered supply networks. While most disruptions originate upstream to a firm's immediate suppliers, unfortunately, most firms still lack visibility into the deeper tiers of the supply network. Beyond this, the extant literature on network resilience is mostly focused on simplistic static network analysis methods. We propose an effective method for resilience assessment of deep-tier supply networks. The proposed framework relies on discrete-event simulation informed by secondary data sources and global supply risk assessment/metric databases for improving the assessment of resilience for a firm. We also demonstrate that deep-tier visibility can be critical for effective resilience assessment of global networks. We validate the efficiency of the proposed method using a case-study informed by a real-world automotive supply network. Additionally, a sensitivity analysis approach is proposed to provide better directional guidance to decision-makers on the means to improve network resilience.

Suggested Citation

  • Taghizadeh, Elham & Venkatachalam, Saravanan & Chinnam, Ratna Babu, 2021. "Impact of deep-tier visibility on effective resilience assessment of supply networks," International Journal of Production Economics, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:proeco:v:241:y:2021:i:c:s0925527321002309
    DOI: 10.1016/j.ijpe.2021.108254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321002309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hatem Elleuch & Wafik Hachicha & Habib Chabchoub, 2014. "A combined approach for supply chain risk management: description and application to a real hospital pharmaceutical case study," Journal of Risk Research, Taylor & Francis Journals, vol. 17(5), pages 641-663, May.
    2. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    3. Nagurney, Anna & Yu, Min & Floden, Jonas & Nagurney, Ladimer S., 2014. "Supply chain network competition in time-sensitive markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 112-127.
    4. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    5. Kleijnen, J.P.C., 2005. "Supply chain simulation tools and techniques : A survey," Other publications TiSEM d0050225-57bd-4114-ab15-7, Tilburg University, School of Economics and Management.
    6. Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
    7. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    8. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    9. Kamil J. Mizgier, 2017. "Global sensitivity analysis and aggregation of risk in multi-product supply chain networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 130-144, January.
    10. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    11. Persson, Fredrik & Olhager, Jan, 2002. "Performance simulation of supply chain designs," International Journal of Production Economics, Elsevier, vol. 77(3), pages 231-245, June.
    12. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    13. Borgonovo, E. & Peccati, L., 2007. "Global sensitivity analysis in inventory management," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 302-313, July.
    14. John R. Macdonald & Christopher W. Zobel & Steven A. Melnyk & Stanley E. Griffis, 2018. "Supply chain risk and resilience: theory building through structured experiments and simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(12), pages 4337-4355, June.
    15. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    16. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    17. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heldt, Lisa & Beske-Janssen, Philip, 2023. "Solutions from space? A dynamic capabilities perspective on the growing use of satellite technology for managing sustainability in multi-tier supply chains," International Journal of Production Economics, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    2. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    4. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    7. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    8. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    10. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    11. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    12. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    13. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    15. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    17. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    18. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    19. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    20. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:241:y:2021:i:c:s0925527321002309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.