IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i3p250-257.html
   My bibliography  Save this article

Parallel machine scheduling with job assignment restrictions

Author

Listed:
  • Celia A. Glass
  • Hans Kellerer

Abstract

In the classical multiprocessor scheduling problem independent jobs must be assigned to parallel, identical machines with the objective of minimizing the makespan. This article explores the effect of assignment restrictions on the jobs for multiprocessor scheduling problems. This means that each job can only be processed on a specific subset of the machines. Particular attention is given to the case of processing times restricted to one of two values, 1 and λ, differing by at most 2. A matching based polynomial time ε‐approximation algorithm is developed that has a performance ratio tending to $2-{1 \over 1+\lambda}$ . This algorithm is shown to have the best possible performance, tending to 3/2, for processing times 1 and 2. For the special case of nested processing sets, i.e., when the sets of machines upon which individual jobs may be assigned are non‐overlapping, the behavior of list scheduling algorithms is explored. Finally, for assignment restrictions determined by just one characteristic of the machines, such as disc storage or memory constraint in the case of high performance computing, we contribute an algorithm that provides a 3/2 worst case bound and runs in time linear in the number of jobs. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007

Suggested Citation

  • Celia A. Glass & Hans Kellerer, 2007. "Parallel machine scheduling with job assignment restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 250-257, April.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:3:p:250-257
    DOI: 10.1002/nav.20202
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20202
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. A. Horn, 1973. "Technical Note—Minimizing Average Flow Time with Parallel Machines," Operations Research, INFORMS, vol. 21(3), pages 846-847, June.
    2. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    3. Peter Brucker & Bernd Jurisch & Andreas Krämer, 1997. "Complexity of scheduling problems with multi-purpose machines," Annals of Operations Research, Springer, vol. 70(0), pages 57-73, April.
    4. Charles Martel, 1985. "Preemptive Scheduling to Minimize Maximum Completion Time on Uniform Processors with Memory Constraints," Operations Research, INFORMS, vol. 33(6), pages 1360-1380, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shlomo Karhi & Dvir Shabtay, 2013. "On the optimality of the TLS algorithm for solving the online-list scheduling problem with two job types on a set of multipurpose machines," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 198-222, July.
    2. Mallik Angalakudati & Siddharth Balwani & Jorge Calzada & Bikram Chatterjee & Georgia Perakis & Nicolas Raad & Joline Uichanco, 2014. "Business Analytics for Flexible Resource Allocation Under Random Emergencies," Management Science, INFORMS, vol. 60(6), pages 1552-1573, June.
    3. Jinwen Ou & Joseph Y.‐T. Leung & Chung‐Lun Li, 2008. "Scheduling parallel machines with inclusive processing set restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 328-338, June.
    4. Kangbok Lee & Byung‐Cheon Choi & Joseph Y‐T. Leung & Michael L. Pinedo & Dirk Briskorn, 2012. "Minimizing the total weighted delivery time in container transportation scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 266-277, April.
    5. Jinwen Ou & Xueling Zhong & Xiangtong Qi, 2016. "Scheduling parallel machines with inclusive processing set restrictions and job rejection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 667-681, December.
    6. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    2. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    3. Rabia Nessah & Chengbin Chu, 2010. "Infinite split scheduling: a new lower bound of total weighted completion time on parallel machines with job release dates and unavailability periods," Annals of Operations Research, Springer, vol. 181(1), pages 359-375, December.
    4. Juntaek Hong & Kangbok Lee & Michael L. Pinedo, 2020. "Scheduling equal length jobs with eligibility restrictions," Annals of Operations Research, Springer, vol. 285(1), pages 295-314, February.
    5. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
    6. Willem E. de Paepe & Jan Karel Lenstra & Jiri Sgall & René A. Sitters & Leen Stougie, 2004. "Computer-Aided Complexity Classification of Dial-a-Ride Problems," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 120-132, May.
    7. Huynh Tuong, Nguyen & Soukhal, Ameur & Billaut, Jean-Charles, 2010. "A new dynamic programming formulation for scheduling independent tasks with common due date on parallel machines," European Journal of Operational Research, Elsevier, vol. 202(3), pages 646-653, May.
    8. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    9. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    10. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    11. Zhi-Long Chen & Nicholas G. Hall, 2010. "The Coordination of Pricing and Scheduling Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 77-92, April.
    12. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    13. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.
    14. Marcin Siepak & Jerzy Józefczyk, 2014. "Solution algorithms for unrelated machines minmax regret scheduling problem with interval processing times and the total flow time criterion," Annals of Operations Research, Springer, vol. 222(1), pages 517-533, November.
    15. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    16. Aubry, A. & Rossi, A. & Espinouse, M.-L. & Jacomino, M., 2008. "Minimizing setup costs for parallel multi-purpose machines under load-balancing constraint," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1115-1125, June.
    17. Tom Demeulemeester & Dries Goossens & Ben Hermans & Roel Leus, 2023. "Fair integer programming under dichotomous and cardinal preferences," Papers 2306.13383, arXiv.org, revised Apr 2024.
    18. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    19. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
    20. Leah Epstein & Ido Yatsiv, 2017. "Preemptive scheduling on uniformly related machines: minimizing the sum of the largest pair of job completion times," Journal of Scheduling, Springer, vol. 20(2), pages 115-127, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:3:p:250-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.