IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i6d10.1007_s10951-024-00818-9.html
   My bibliography  Save this article

Serial batching to minimize the weighted number of tardy jobs

Author

Listed:
  • Danny Hermelin

    (Ben-Gurion University of the Negev)

  • Matthias Mnich

    (Institute for Algorithms and Complexity)

  • Simon Omlor

    (TU Dortmund University)

Abstract

The $$1\vert \text {s-batch}(\infty ),r_j\vert \sum w_jU_j$$ 1 | s-batch ( ∞ ) , r j | ∑ w j U j scheduling problem takes as input a batch setup time $$\Delta $$ Δ and a set of n jobs, each having a processing time, a release date, a weight, and a due date; the task is to find a sequence of batches that minimizes the weighted number of tardy jobs. This problem was introduced by Hochbaum and Landy (Oper Res Lett 16(2):79–86, 1994); as a wide generalization of Knapsack, it is $$\textsf{NP}$$ NP -hard. In this work, we provide a multivariate complexity analysis of the $$1\vert \text {s-batch}(\infty ), r_j\vert \sum w_jU_j$$ 1 | s-batch ( ∞ ) , r j | ∑ w j U j problem with respect to several natural parameters. That is, we establish a classification into fixed-parameter tractable and $$\textsf{W}[1]$$ W [ 1 ] -hard problems, for parameter combinations of (i) $$\#p$$ # p = number of distinct processing times, (ii) $$\#w$$ # w = number of distinct weights, (iii) $$\#d$$ # d = number of distinct due dates, (iv) $$\#r$$ # r = number of distinct release dates. Thereby, we significantly extend the work of Hermelin et al. (Ann Oper Res 298:271–287, 2018) who analyzed the parameterized complexity of the non-batch variant of this problem without release dates. As one of our key results, we prove that $$1\vert \text {s-batch}(\infty ), r_j\vert \sum w_jU_j$$ 1 | s-batch ( ∞ ) , r j | ∑ w j U j is $$\textsf{W}[1]$$ W [ 1 ] -hard parameterized by the number of distinct processing times and distinct due dates. To the best of our knowledge, these are the first parameterized intractability results for scheduling problems with few distinct processing times. Further, we show that $$1\vert \text {s-batch}(\infty ), r_j\vert \sum w_jU_j$$ 1 | s-batch ( ∞ ) , r j | ∑ w j U j is fixed-parameter tractable parameterized by $$\#d + \#p + \#r$$ # d + # p + # r , and parameterized by $$\#d + \#w$$ # d + # w if there is just a single release date. Both results hold even if the number of jobs per batch is limited by some integer b.

Suggested Citation

  • Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:6:d:10.1007_s10951-024-00818-9
    DOI: 10.1007/s10951-024-00818-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00818-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00818-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. René Bevern & Rolf Niedermeier & Ondřej Suchý, 2017. "A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and small slack," Journal of Scheduling, Springer, vol. 20(3), pages 255-265, June.
    2. Hermelin, Danny & Pinedo, Michael & Shabtay, Dvir & Talmon, Nimrod, 2019. "On the parameterized tractability of single machine scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 273(1), pages 67-73.
    3. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    4. Dušan Knop & Martin Koutecký, 2018. "Scheduling meets n-fold integer programming," Journal of Scheduling, Springer, vol. 21(5), pages 493-503, October.
    5. Renhua Li & Leonie U Hempel & Tingbo Jiang, 2015. "A Non-Parametric Peak Calling Algorithm for DamID-Seq," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    6. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    7. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    8. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    9. Philippe Baptiste, 2000. "Batching identical jobs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 355-367, December.
    10. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    11. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    12. Cheng, T. C. Edwin & Janiak, Adam & Kovalyov, Mikhail Y., 2001. "Single machine batch scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 135(1), pages 177-183, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    2. Klaus Heeger & Danny Hermelin & George B. Mertzios & Hendrik Molter & Rolf Niedermeier & Dvir Shabtay, 2023. "Equitable scheduling on a single machine," Journal of Scheduling, Springer, vol. 26(2), pages 209-225, April.
    3. Matthias Bentert & Robert Bredereck & Péter Györgyi & Andrzej Kaczmarczyk & Rolf Niedermeier, 2023. "A multivariate complexity analysis of the material consumption scheduling problem," Journal of Scheduling, Springer, vol. 26(4), pages 369-382, August.
    4. Ou, Jinwen & Lu, Lingfa & Zhong, Xueling, 2023. "Parallel-batch scheduling with rejection: Structural properties and approximation algorithms," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1017-1032.
    5. Danny Hermelin & Dvir Shabtay & Chen Zelig & Michael Pinedo, 2022. "A general scheme for solving a large set of scheduling problems with rejection in FPT time," Journal of Scheduling, Springer, vol. 25(2), pages 229-255, April.
    6. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    7. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    8. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    9. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    10. Shabtay, Dvir, 2014. "The single machine serial batch scheduling problem with rejection to minimize total completion time and total rejection cost," European Journal of Operational Research, Elsevier, vol. 233(1), pages 64-74.
    11. Beat Gfeller & Leon Peeters & Birgitta Weber & Peter Widmayer, 2009. "Single machine batch scheduling with release times," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 323-338, April.
    12. Daniel Ng, C. T. & Cheng, T. C. Edwin & Kovalyov, Mikhail Y., 2004. "Single machine batch scheduling with jointly compressible setup and processing times," European Journal of Operational Research, Elsevier, vol. 153(1), pages 211-219, February.
    13. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    14. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    15. Vladimir Krasik & Joseph Leung & Michael Pinedo & Jiawei Zhang, 2008. "Scheduling multiple products on parallel machines with setup costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 654-669, October.
    16. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    17. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    18. C T Daniel Ng & T C E Cheng & M Y Kovalyov, 2003. "Batch scheduling with controllable setup and processing times to minimize total completion time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 499-506, May.
    19. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    20. Cheng, T. C. Edwin & Janiak, Adam & Kovalyov, Mikhail Y., 2001. "Single machine batch scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 135(1), pages 177-183, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:6:d:10.1007_s10951-024-00818-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.