IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v116y2008i2p251-262.html
   My bibliography  Save this article

Scheduling with processing set restrictions: A survey

Author

Listed:
  • Leung, Joseph Y.-T.
  • Li, Chung-Lun

Abstract

Scheduling problems with processing set restrictions have been studied extensively by computer scientists and operations researchers under different names. These include "scheduling typed task systems," "multi-purpose machine scheduling," "scheduling with eligibility constraints," "scheduling with processing set restrictions," and "semi-matchings for bipartite graphs." In this paper we survey the state of the art of these problems. Our survey covers offline and online problems, as well as nonpreemptive and preemptive scheduling environments. Our emphasis is on polynomial-time algorithms, complexity issues, and approximation schemes. While our main focus is on the makespan objective, other performance criteria are also discussed.

Suggested Citation

  • Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
  • Handle: RePEc:eee:proeco:v:116:y:2008:i:2:p:251-262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00307-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chung-Lun, 2006. "Scheduling unit-length jobs with machine eligibility restrictions," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1325-1328, October.
    2. Yiwei Jiang, 2008. "Online scheduling on parallel machines with two GoS levels," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 28-38, July.
    3. Peter Brucker & Bernd Jurisch & Andreas Krämer, 1997. "Complexity of scheduling problems with multi-purpose machines," Annals of Operations Research, Springer, vol. 70(0), pages 57-73, April.
    4. Charles Martel, 1985. "Preemptive Scheduling to Minimize Maximum Completion Time on Uniform Processors with Memory Constraints," Operations Research, INFORMS, vol. 33(6), pages 1360-1380, December.
    5. Klaus Jansen & Lorant Porkolab, 2001. "Improved Approximation Schemes for Scheduling Unrelated Parallel Machines," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 324-338, May.
    6. Lin, Yixun & Li, Wenhua, 2004. "Parallel machine scheduling of machine-dependent jobs with unit-length," European Journal of Operational Research, Elsevier, vol. 156(1), pages 261-266, July.
    7. Aubry, A. & Rossi, A. & Espinouse, M.-L. & Jacomino, M., 2008. "Minimizing setup costs for parallel multi-purpose machines under load-balancing constraint," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1115-1125, June.
    8. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    9. Hark-Chin Hwang & Soo Y. Chang & Yushin Hong, 2004. "A Posterior Competitiveness For List Scheduling Algorithm On Machines With Eligibility Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 117-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuguang, 2017. "Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan," European Journal of Operational Research, Elsevier, vol. 260(1), pages 12-20.
    2. Karhi, Shlomo & Shabtay, Dvir, 2014. "Online scheduling of two job types on a set of multipurpose machines," International Journal of Production Economics, Elsevier, vol. 150(C), pages 155-162.
    3. André Rossi & Alexis Aubry & Mireille Jacomino, 2011. "A sensitivity analysis to assess the completion time deviation for multi-purpose machines facing demand uncertainty," Annals of Operations Research, Springer, vol. 191(1), pages 219-249, November.
    4. Huo, Yumei & Leung, Joseph Y.-T., 2010. "Parallel machine scheduling with nested processing set restrictions," European Journal of Operational Research, Elsevier, vol. 204(2), pages 229-236, July.
    5. Kangbok Lee & Joseph Leung & Michael Pinedo, 2013. "Makespan minimization in online scheduling with machine eligibility," Annals of Operations Research, Springer, vol. 204(1), pages 189-222, April.
    6. Celia A. Glass & Hans Kellerer, 2007. "Parallel machine scheduling with job assignment restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 250-257, April.
    7. Juntaek Hong & Kangbok Lee & Michael L. Pinedo, 2020. "Scheduling equal length jobs with eligibility restrictions," Annals of Operations Research, Springer, vol. 285(1), pages 295-314, February.
    8. Li, Chung-Lun & Wang, Xiuli, 2010. "Scheduling parallel machines with inclusive processing set restrictions and job release times," European Journal of Operational Research, Elsevier, vol. 200(3), pages 702-710, February.
    9. Michael Geurtsen & Jelle Adan & Alp Akçay, 2024. "Integrated maintenance and production scheduling for unrelated parallel machines with setup times," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1046-1079, September.
    10. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    11. Xiaofei Liu & Peiyin Xing & Weidong Li, 2020. "Approximation Algorithms for the Submodular Load Balancing with Submodular Penalties," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    12. Islam Akaria & Leah Epstein, 2023. "Bin stretching with migration on two hierarchical machines," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 111-153, August.
    13. Chen, Lin & Ye, Deshi & Zhang, Guochuan, 2018. "Parallel machine scheduling with speed-up resources," European Journal of Operational Research, Elsevier, vol. 268(1), pages 101-112.
    14. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    15. Li, Chung-Lun, 2006. "Scheduling unit-length jobs with machine eligibility restrictions," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1325-1328, October.
    16. Xu, Dehua & Yin, Yunqiang & Li, Hongxing, 2009. "A note on "scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 825-827, September.
    17. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    18. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    19. Lee, Kangbok & Hwang, Hark-Chin & Lim, Kyungkuk, 2014. "Semi-online scheduling with GoS eligibility constraints," International Journal of Production Economics, Elsevier, vol. 153(C), pages 204-214.
    20. Jianfu Chen & Kai Li & Chengbin Chu & Abderrahim Sahli, 2024. "A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints," Operational Research, Springer, vol. 24(2), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:116:y:2008:i:2:p:251-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.