IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v207y2013i1p121-13610.1007-s10479-012-1288-x.html
   My bibliography  Save this article

Single machine total tardiness maximization problems: complexity and algorithms

Author

Listed:
  • Evgeny Gafarov
  • Alexander Lazarev
  • Frank Werner

Abstract

In this paper, we consider some scheduling problems on a single machine, where weighted or unweighted total tardiness has to be maximized in contrast to usual minimization problems. These problems are theoretically important and have also practical interpretations. For the total weighted tardiness maximization problem, we present an NP-hardness proof and a pseudo-polynomial solution algorithm. For the unweighted total tardiness maximization problem with release dates, NP-hardness is proven. Complexity results for some other classical objective functions (e.g., the number of tardy jobs, total completion time) and various additional constraints (e.g., deadlines, weights and/or release dates of jobs may be given) are presented as well. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
  • Handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:121-136:10.1007/s10479-012-1288-x
    DOI: 10.1007/s10479-012-1288-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1288-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1288-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    2. Mohamed Aloulou & Mikhail Kovalyov & Marie-Claude Portmann, 2004. "Maximization Problems in Single Machine Scheduling," Annals of Operations Research, Springer, vol. 129(1), pages 21-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander A. Lazarev & Nikolay Pravdivets & Frank Werner, 2020. "On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    2. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    3. Sergey Kovalev, 2015. "Maximizing total tardiness on a single machine in $$O(n^2)$$ O ( n 2 ) time via a reduction to half-product minimization," Annals of Operations Research, Springer, vol. 235(1), pages 815-819, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2012. "Transforming a pseudo-polynomial algorithm for the single machine total tardiness maximization problem into a polynomial one," Annals of Operations Research, Springer, vol. 196(1), pages 247-261, July.
    2. Sergey Kovalev, 2015. "Maximizing total tardiness on a single machine in $$O(n^2)$$ O ( n 2 ) time via a reduction to half-product minimization," Annals of Operations Research, Springer, vol. 235(1), pages 815-819, December.
    3. Willem E. de Paepe & Jan Karel Lenstra & Jiri Sgall & René A. Sitters & Leen Stougie, 2004. "Computer-Aided Complexity Classification of Dial-a-Ride Problems," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 120-132, May.
    4. Huynh Tuong, Nguyen & Soukhal, Ameur & Billaut, Jean-Charles, 2010. "A new dynamic programming formulation for scheduling independent tasks with common due date on parallel machines," European Journal of Operational Research, Elsevier, vol. 202(3), pages 646-653, May.
    5. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    6. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    7. Zhi-Long Chen & Nicholas G. Hall, 2010. "The Coordination of Pricing and Scheduling Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 77-92, April.
    8. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.
    9. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    10. Tom Demeulemeester & Dries Goossens & Ben Hermans & Roel Leus, 2023. "Fair integer programming under dichotomous and cardinal preferences," Papers 2306.13383, arXiv.org, revised Apr 2024.
    11. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    12. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    13. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.
    14. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    15. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    16. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    17. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    18. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    19. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    20. Vincent T’kindt & Federico Della Croce & Jean-Louis Bouquard, 2007. "Enumeration of Pareto Optima for a Flowshop Scheduling Problem with Two Criteria," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 64-72, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:121-136:10.1007/s10479-012-1288-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.