IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v46y1999i7p753-776.html
   My bibliography  Save this article

Response surface analysis of two‐stage stochastic linear programming with recourse

Author

Listed:
  • T. Glenn Bailey
  • Paul A. Jensen
  • David P. Morton

Abstract

We apply the techniques of response surface methodology (RSM) to approximate the objective function of a two‐stage stochastic linear program with recourse. In particular, the objective function is estimated, in the region of optimality, by a quadratic function of the first‐stage decision variables. The resulting response surface can provide valuable modeling insight, such as directions of minimum and maximum sensitivity to changes in the first‐stage variables. Latin hypercube (LH) sampling is applied to reduce the variance of the recourse function point estimates that are used to construct the response surface. Empirical results show the value of the LH method by comparing it with strategies based on independent random numbers, common random numbers, and the Schruben‐Margolin assignment rule. In addition, variance reduction with LH sampling can be guaranteed for an important class of two‐stage problems which includes the classical capacity expansion model. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 753–776, 1999

Suggested Citation

  • T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
  • Handle: RePEc:wly:navres:v:46:y:1999:i:7:p:753-776
    DOI: 10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-M
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-M
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-M?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Athanassios N. Avramidis & James R. Wilson, 1996. "Integrated Variance Reduction Strategies for Simulation," Operations Research, INFORMS, vol. 44(2), pages 327-346, April.
    3. Alan J. King & R. Tyrrell Rockafellar, 1993. "Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 148-162, February.
    4. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    5. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    6. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    7. Julia L. Higle, 1998. "Variance Reduction and Objective Function Evaluation in Stochastic Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 236-247, May.
    8. Jeffrey D. Tew & James R. Wilson, 1992. "Validation of Simulation Analysis Methods for the Schruben-Margolin Correlation-Induction Strategy," Operations Research, INFORMS, vol. 40(1), pages 87-103, February.
    9. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    10. Ardavan Nozari & Steven F. Arnold & C. Dennis Pegden, 1987. "Statistical Analysis for Use with the Schruben and Margolin Correlation Induction Strategy," Operations Research, INFORMS, vol. 35(1), pages 127-139, February.
    11. C. C. Huang & W. T. Ziemba & A. Ben-Tal, 1977. "Bounds on the Expectation of a Convex Function of a Random Variable: With Applications to Stochastic Programming," Operations Research, INFORMS, vol. 25(2), pages 315-325, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jangho Park & Rebecca Stockbridge & Güzin Bayraksan, 2021. "Variance reduction for sequential sampling in stochastic programming," Annals of Operations Research, Springer, vol. 300(1), pages 171-204, May.
    2. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    3. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebecca Stockbridge & Güzin Bayraksan, 2016. "Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 407-431, June.
    2. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    3. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    4. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    5. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    6. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    7. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    8. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    9. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    10. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    11. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    12. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    13. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    14. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    15. Qian, Zhiguang & Shapiro, Alexander, 2006. "Simulation-based approach to estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1243-1259, November.
    16. Shane G. Henderson & Peter W. Glynn, 2001. "Computing Densities for Markov Chains via Simulation," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 375-400, May.
    17. Sebastián Arpón & Tito Homem-de-Mello & Bernardo K. Pagnoncelli, 2020. "An ADMM algorithm for two-stage stochastic programming problems," Annals of Operations Research, Springer, vol. 286(1), pages 559-582, March.
    18. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.
    19. Chen, Chien-Wei & Fan, Yueyue, 2012. "Bioethanol supply chain system planning under supply and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 150-164.
    20. Joshi, Shirish & Tew, Jeffrey D., 1995. "Validation and statistical analysis procedures under the common random number correlation-induction strategy for multipopulation simulation experiments," European Journal of Operational Research, Elsevier, vol. 85(1), pages 205-220, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:46:y:1999:i:7:p:753-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.