IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v44y1996i2p327-346.html
   My bibliography  Save this article

Integrated Variance Reduction Strategies for Simulation

Author

Listed:
  • Athanassios N. Avramidis

    (SABRE Decision Technologies, Paris, France)

  • James R. Wilson

    (North Carolina State University, Raleigh, North Carolina)

Abstract

We develop strategies for integrated use of certain well-known variance reduction techniques to estimate a mean response in a finite-horizon simulation experiment. The building blocks for these integrated variance reduction strategies are the techniques of conditional expectation, correlation induction (including antithetic variates and Latin hypercube sampling), and control variates; all pairings of these techniques are examined. For each integrated strategy, we establish sufficient conditions under which that strategy will yield a smaller response variance than its constituent variance reduction techniques will yield individually. We also provide asymptotic variance comparisons between many of the methods discussed, with emphasis on integrated strategies that incorporate Latin hypercube sampling. An experimental performance evaluation reveals that in the simulation of stochastic activity networks, substantial variance reductions can be achieved with these integrated strategies. Both the theoretical and experimental results indicate that superior performance is obtained via joint application of the techniques of conditional expectation and Latin hypercube sampling.

Suggested Citation

  • Athanassios N. Avramidis & James R. Wilson, 1996. "Integrated Variance Reduction Strategies for Simulation," Operations Research, INFORMS, vol. 44(2), pages 327-346, April.
  • Handle: RePEc:inm:oropre:v:44:y:1996:i:2:p:327-346
    DOI: 10.1287/opre.44.2.327
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.44.2.327
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.44.2.327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Shing Chih & Chu, I-Hao, 2012. "Controlled multistage selection procedures for comparison with a standard," European Journal of Operational Research, Elsevier, vol. 223(3), pages 709-721.
    2. Shane G. Henderson & Peter W. Glynn, 2001. "Computing Densities for Markov Chains via Simulation," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 375-400, May.
    3. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    4. Shing Chih Tsai & Chen Hao Kuo, 2012. "Screening and selection procedures with control variates and correlation induction techniques," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 340-361, August.
    5. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    6. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    7. Hatem Ben-Ameur & Pierre L'Ecuyer & Christiane Lemieux, 2004. "Combination of General Antithetic Transformations and Control Variables," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 946-960, November.
    8. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    9. Barbosa, Valmir C. & Ferreira, Fernando M.L. & Kling, Daniel V. & Lopes, Eduardo & Protti, Fbio & Schmitz, Eber A., 2009. "Structured construction and simulation of nondeterministic stochastic activity networks," European Journal of Operational Research, Elsevier, vol. 198(1), pages 266-274, October.
    10. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    11. N-H Shih, 2005. "Estimating completion-time distribution in stochastic activity networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 744-749, June.
    12. Benedek, Gábor, 1999. "Opcióárazás numerikus módszerekkel [Option pricing by numerical methods]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 905-929.
    13. Shing Chih Tsai & Jun Luo & Chi Ching Sung, 2017. "Combined variance reduction techniques in fully sequential selection procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 502-527, September.
    14. Alban, Andres & Darji, Hardik A. & Imamura, Atsuki & Nakayama, Marvin K., 2017. "Efficient Monte Carlo methods for estimating failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 376-394.
    15. Jong Jun Park & Geon Ho Choe, 2016. "A new variance reduction method for option pricing based on sampling the vertices of a simplex," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1165-1173, August.
    16. Qian, Zhiguang & Shapiro, Alexander, 2006. "Simulation-based approach to estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1243-1259, November.
    17. Riane, F. & Artiba, A. & Iassinovski, S., 2001. "An integrated production planning and scheduling system for hybrid flowshop organizations," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 33-48, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:44:y:1996:i:2:p:327-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.