IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i4p964-974.html
   My bibliography  Save this article

Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse

Author

Listed:
  • Sanjay Mehrotra

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • M. Gokhan Ozevin

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

Zhao showed that the log barrier associated with the recourse function of two-stage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self-concordant family on the first-stage solutions. In this paper, we show that the recourse function is also strongly self-concordant and forms a self-concordant family for the two-stage stochastic convex quadratic programs with recourse. This allows us to develop Bender's decomposition based linearly convergent interior point algorithms. An analysis of such an algorithm is given in this paper.

Suggested Citation

  • Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:4:p:964-974
    DOI: 10.1287/opre.1080.0659
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0659
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Alexander Shapiro, 1993. "Asymptotic Behavior of Optimal Solutions in Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 829-845, November.
    3. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    4. Alan J. King & R. Tyrrell Rockafellar, 1993. "Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 148-162, February.
    5. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    6. Joseph Czyzyk & Robert Fourer & Sanjay Mehrotra, 1995. "A Study of the Augmented System and Column-Splitting Approaches for Solving Two-Stage Stochastic Linear Programs by Interior-Point Methods," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 474-490, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui, Yer Van & Gao, Jia & Leung, Lawrence & Wallace, Stein, 2014. "Airfreight forwarder’s shipment planning under uncertainty: A two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 83-102.
    2. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    3. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    2. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.
    3. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    4. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2020. "Optimization techniques for tree-structured nonlinear problems," Computational Management Science, Springer, vol. 17(3), pages 409-436, October.
    5. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    6. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    7. Aydin, Nezir & Murat, Alper, 2013. "A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 173-183.
    8. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    9. Sebastián Arpón & Tito Homem-de-Mello & Bernardo K. Pagnoncelli, 2020. "An ADMM algorithm for two-stage stochastic programming problems," Annals of Operations Research, Springer, vol. 286(1), pages 559-582, March.
    10. G. Guerkan & A.Y. Oezge & S.M. Robinson, 1994. "Sample-Path Optimization in Simulation," Working Papers wp94070, International Institute for Applied Systems Analysis.
    11. Daniel Ralph & Huifu Xu, 2011. "Convergence of Stationary Points of Sample Average Two-Stage Stochastic Programs: A Generalized Equation Approach," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 568-592, August.
    12. Halit Üster & Gökhan Memişoğlu, 2018. "Biomass Logistics Network Design Under Price-Based Supply and Yield Uncertainty," Transportation Science, INFORMS, vol. 52(2), pages 474-492, March.
    13. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    14. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    15. R.J.-B. Wets, 1994. "Challenges in Stochastic Programming," Working Papers wp94032, International Institute for Applied Systems Analysis.
    16. G.C. Pflug & A. Ruszczynski & R. Schultz, 1995. "On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse," Working Papers wp95003, International Institute for Applied Systems Analysis.
    17. Site Wang & Harsha Gangammanavar & Sandra Ekşioğlu & Scott J. Mason, 2020. "Statistical estimation of operating reserve requirements using rolling horizon stochastic optimization," Annals of Operations Research, Springer, vol. 292(1), pages 371-397, September.
    18. Rebecca Stockbridge & Güzin Bayraksan, 2016. "Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 407-431, June.
    19. Panos Parpas & Berk Ustun & Mort Webster & Quang Kha Tran, 2015. "Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 358-377, May.
    20. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:4:p:964-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.