IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v64y2016i2d10.1007_s10589-015-9814-9.html
   My bibliography  Save this article

Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming

Author

Listed:
  • Rebecca Stockbridge

    (General Motors)

  • Güzin Bayraksan

    (The Ohio State University)

Abstract

This paper presents a comparative computational study of the variance reduction techniques antithetic variates and Latin hypercube sampling when used for assessing solution quality in stochastic programming. Three Monte Carlo sampling-based procedures that provide point and interval estimators of optimality gap are considered: one that uses multiple replications, and two others with an alternative sample variance estimator that use single or two replications. Theoretical justification for using these alternative sampling techniques is discussed. In particular, we discuss asymptotic properties of the resulting estimators using Latin hypercube sampling for single- and two-replication procedures in detail. These theoretical considerations result in some subtle changes in the implementation of the procedures. A collection of two-stage stochastic linear test problems with different characteristics is used to empirically compare the three procedures for assessing solution quality with these variance reduction techniques.

Suggested Citation

  • Rebecca Stockbridge & Güzin Bayraksan, 2016. "Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 407-431, June.
  • Handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9814-9
    DOI: 10.1007/s10589-015-9814-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-015-9814-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-015-9814-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Keller & GÜzİn Bayraksan, 2010. "Scheduling jobs sharing multiple resources under uncertainty: A stochastic programming approach," IISE Transactions, Taylor & Francis Journals, vol. 42(1), pages 16-30.
    2. Alan J. King & R. Tyrrell Rockafellar, 1993. "Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 148-162, February.
    3. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    4. Julia L. Higle, 1998. "Variance Reduction and Objective Function Evaluation in Stochastic Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 236-247, May.
    5. Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
    6. Gerd Infanger (ed.), 2011. "Stochastic Programming," International Series in Operations Research and Management Science, Springer, number 978-1-4419-1642-6, December.
    7. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    8. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    9. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    10. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    11. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    12. Marida Bertocchi & Vittorio Moriggia & Jitka Dupačová, 2000. "Sensitivity of Bond Portfolio's Behavior with Respect to Random Movements in Yield Curve: A Simulation Study," Annals of Operations Research, Springer, vol. 99(1), pages 267-286, December.
    13. Shane S. Drew & Tito Homem-de-Mello, 2012. "Some Large Deviations Results for Latin Hypercube Sampling," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 203-232, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jangho Park & Rebecca Stockbridge & Güzin Bayraksan, 2021. "Variance reduction for sequential sampling in stochastic programming," Annals of Operations Research, Springer, vol. 300(1), pages 171-204, May.
    2. E. Ruben van Beesten & Nick W. Koning & David P. Morton, 2024. "Assessing solution quality in risk-averse stochastic programs," Papers 2408.15690, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jangho Park & Rebecca Stockbridge & Güzin Bayraksan, 2021. "Variance reduction for sequential sampling in stochastic programming," Annals of Operations Research, Springer, vol. 300(1), pages 171-204, May.
    2. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    3. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    4. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    5. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    6. Löhndorf, Nils, 2016. "An empirical analysis of scenario generation methods for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 255(1), pages 121-132.
    7. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    8. Panos Parpas & Berk Ustun & Mort Webster & Quang Kha Tran, 2015. "Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 358-377, May.
    9. Yunxiao Deng & Suvrajeet Sen, 2022. "Predictive stochastic programming," Computational Management Science, Springer, vol. 19(1), pages 65-98, January.
    10. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.
    11. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    12. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    13. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    14. Shangyao Yan & Chia-Hung Chen & Chung-Kai Chen, 2008. "Short-term shift setting and manpower supplying under stochastic demands for air cargo terminals," Transportation, Springer, vol. 35(3), pages 425-444, May.
    15. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.
    16. Aydin, Nezir & Murat, Alper, 2013. "A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 173-183.
    17. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    18. Yan, Shangyao & Chi, Chin-Jen & Tang, Ching-Hui, 2006. "Inter-city bus routing and timetable setting under stochastic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 572-586, August.
    19. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    20. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9814-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.