IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v131y2006i3d10.1007_s10957-006-9156-y.html
   My bibliography  Save this article

Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems

Author

Listed:
  • X. W. Liu

    (Hebei University of Technology)

  • M. Fukushima

    (Kyoto University)

Abstract

Stochastic programming has extensive applications in practical problems such as production planning and portfolio selection. Typically, the model has very large size and some techniques are often used to exploit the special structure of the programs. It has been noticed that the coefficient matrix may not be of full rank in the well-known scenario formulation of stochastic programming; thus, the preprocessing is often necessary in developing rapid decomposition methods. In this paper, we propose a parallelizable preprocessing method, which exploits effectively the structure of the formulation. Although the underlying idea is simple, the method turns out to be very useful in practice, since it may help us to select the nonanticipativity constraints efficiently. Some numerical results are reported confirming the usefulness of the method.

Suggested Citation

  • X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
  • Handle: RePEc:spr:joptap:v:131:y:2006:i:3:d:10.1007_s10957-006-9156-y
    DOI: 10.1007/s10957-006-9156-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9156-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9156-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    3. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    4. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    5. Arjan Berkelaar & Cees Dert & Bart Oldenkamp & Shuzhong Zhang, 2002. "A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming," Operations Research, INFORMS, vol. 50(5), pages 904-915, October.
    6. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    7. Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    2. Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    4. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    5. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    6. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    7. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    8. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    9. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    10. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    11. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    12. Arjan Berkelaar & Cees Dert & Bart Oldenkamp & Shuzhong Zhang, 2002. "A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming," Operations Research, INFORMS, vol. 50(5), pages 904-915, October.
    13. J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
    14. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    15. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    16. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    17. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    18. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    19. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    20. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:131:y:2006:i:3:d:10.1007_s10957-006-9156-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.