IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v39y1992i4p545-559.html
   My bibliography  Save this article

On the classification gap in mathematical programming‐based approaches to the discriminant problem

Author

Listed:
  • Antonie Stam
  • Cliff T. Ragsdale

Abstract

This article proposes a mathematical‐programming‐based approach to solve the classification problem in discriminant analysis which explicitly considers the classification gap. The procedure consists of two distinct phases and initially treats the classification gap as a fuzzy set in which the classification rule is not yet established. The nature of the classification gap is examined and a variety of methods are discussed which can be applied to identify the most appropriate classification rule over the fuzzy set. The proposed methodology has several potential advantages. First, it offers a more refined approach to the classification problem, facilitating careful analysis of the fuzzy region where the classification decision may not be obvious. Secondly, the two‐phase approach enables the analysis of larger data sets when using computer‐intensive procedures such as mixed‐integer programming. Finally, because of the restricted choice of separating hyperplanes in phase 2, the approach appears to be more robust than other classification techniques with respect to outlier‐contaminated data conditions. The robustness issue and computational advantage of our proposed methodology are illustrated using a limited simulation experiment.

Suggested Citation

  • Antonie Stam & Cliff T. Ragsdale, 1992. "On the classification gap in mathematical programming‐based approaches to the discriminant problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 545-559, June.
  • Handle: RePEc:wly:navres:v:39:y:1992:i:4:p:545-559
    DOI: 10.1002/1520-6750(199206)39:43.0.CO;2-A
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199206)39:43.0.CO;2-A
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199206)39:43.0.CO;2-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stam, Antonie & Joachimsthaler, Erich A., 1990. "A comparison of a robust mixed-integer approach to existing methods for establishing classification rules for the discriminant problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 113-122, May.
    2. Lastovicka, John L, et al, 1987. "A Lifestyle Typology to Model Young Male Drinking and Driving," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(2), pages 257-263, September.
    3. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    4. Kaplan, Robert S & Urwitz, Gabriel, 1979. "Statistical Models of Bond Ratings: A Methodological Inquiry," The Journal of Business, University of Chicago Press, vol. 52(2), pages 231-261, April.
    5. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    2. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    3. Saïd Hanafi & Nicola Yanev, 2011. "Tabu search approaches for solving the two-group classification problem," Annals of Operations Research, Springer, vol. 183(1), pages 25-46, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    2. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    3. Burcu Dikmen & Güray Küçükkocaoğlu, 2010. "The detection of earnings manipulation: the three-phase cutting plane algorithm using mathematical programming," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 442-466.
    4. Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
    5. Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
    6. Roe, R.A. & Smeelen, M. & Hoefeld, C., 2005. "Outsourcing and organizational change : an employee perspective," Research Memorandum 045, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Lam, Kim Fung & Moy, Jane W., 2002. "Combining discriminant methods in solving classification problems in two-group discriminant analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 294-301, April.
    8. Yanev, N. & Balev, S., 1999. "A combinatorial approach to the classification problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 339-350, June.
    9. Uney, Fadime & Turkay, Metin, 2006. "A mixed-integer programming approach to multi-class data classification problem," European Journal of Operational Research, Elsevier, vol. 173(3), pages 910-920, September.
    10. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    11. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    12. Wilson, J. M., 1996. "Integer programming formulations of statistical classification problems," Omega, Elsevier, vol. 24(6), pages 681-688, December.
    13. Carrizosa, E. & Martin-Barragán, B. & Plastria, F. & Romero Morales, M.D., 2002. "A Dissimilarity-based approach for Classification," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. J J Glen, 2005. "Mathematical programming models for piecewise-linear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 331-341, March.
    15. Loucopoulos, Constantine, 2001. "Three-group classification with unequal misclassification costs: a mathematical programming approach," Omega, Elsevier, vol. 29(3), pages 291-297, June.
    16. Lam, Kim Fung & Choo, Eng Ung & Moy, Jane W., 1996. "Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem," European Journal of Operational Research, Elsevier, vol. 88(2), pages 358-367, January.
    17. K Falangis & J J Glen, 2010. "Heuristics for feature selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 804-812, May.
    18. Geert Bekaert & Robert J. Hodrick, 2001. "Expectations Hypotheses Tests," Journal of Finance, American Finance Association, vol. 56(4), pages 1357-1394, August.
    19. Nakashima, Kiyotaka & Ogawa, Toshiaki, 2020. "The Impacts of Strengthening Regulatory Surveillance on Bank Behavior: A Dynamic Analysis from Incomplete to Complete Enforcement of Capital Regulation in Microprudential Policy," MPRA Paper 99938, University Library of Munich, Germany.
    20. Król, Michał, 2012. "Product differentiation decisions under ambiguous consumer demand and pessimistic expectations," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 593-604.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:39:y:1992:i:4:p:545-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.