Outsourcing and organizational change : an employee perspective
Author
Abstract
Suggested Citation
DOI: 10.26481/umamet.2005045
Download full text from publisher
References listed on IDEAS
- Mihoko V. Bennett & Thomas R. Willemain, 2004. "The Filtered Nearest Neighbor Method for Generating Low-Discrepancy Sequences," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 68-72, February.
- Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
- Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
- Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
- Willy Gochet & Antonie Stam & V. Srinivasan & Shaoxiang Chen, 1997. "Multigroup Discriminant Analysis Using Linear Programming," Operations Research, INFORMS, vol. 45(2), pages 213-225, April.
- Plastria, Frank, 2002. "Formulating logical implications in combinatorial optimisation," European Journal of Operational Research, Elsevier, vol. 140(2), pages 338-353, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emilio Carrizosa & Belén Martín-Barragán & Frank Plastria & Dolores Romero Morales, 2007. "On the Selection of the Globally Optimal Prototype Subset for Nearest-Neighbor Classification," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 470-479, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carrizosa, E. & Martin-Barragán, B. & Plastria, F. & Romero Morales, M.D., 2002. "A Dissimilarity-based approach for Classification," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Emilio Carrizosa & Belén Martín-Barragán & Frank Plastria & Dolores Romero Morales, 2007. "On the Selection of the Globally Optimal Prototype Subset for Nearest-Neighbor Classification," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 470-479, August.
- Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
- Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
- Loucopoulos, Constantine, 2001. "Three-group classification with unequal misclassification costs: a mathematical programming approach," Omega, Elsevier, vol. 29(3), pages 291-297, June.
- Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
- Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
- Antonie Stam & Cliff T. Ragsdale, 1992. "On the classification gap in mathematical programming‐based approaches to the discriminant problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 545-559, June.
- Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
- Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
- Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
- J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
- Bruce Golden & Linus Schrage & Douglas Shier & Lida Anna Apergi, 2021. "The power of linear programming: some surprising and unexpected LPs," 4OR, Springer, vol. 19(1), pages 15-40, March.
- Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
- Burcu Dikmen & Güray Küçükkocaoğlu, 2010. "The detection of earnings manipulation: the three-phase cutting plane algorithm using mathematical programming," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 442-466.
- Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
- Geert Bekaert & Robert J. Hodrick, 2001.
"Expectations Hypotheses Tests,"
Journal of Finance, American Finance Association, vol. 56(4), pages 1357-1394, August.
- Geert Bekaert & Robert J. Hodrick, 2000. "Expectations Hypotheses Tests," NBER Working Papers 7609, National Bureau of Economic Research, Inc.
- Nakashima, Kiyotaka & Ogawa, Toshiaki, 2020. "The Impacts of Strengthening Regulatory Surveillance on Bank Behavior: A Dynamic Analysis from Incomplete to Complete Enforcement of Capital Regulation in Microprudential Policy," MPRA Paper 99938, University Library of Munich, Germany.
- Król, Michał, 2012.
"Product differentiation decisions under ambiguous consumer demand and pessimistic expectations,"
International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 593-604.
- Michal Król, 2011. "Product differentiation decisions under ambiguous consumer demand and pessimistic expectations," Economics Discussion Paper Series 1103, Economics, The University of Manchester.
- Maenhout, Broos & Vanhoucke, Mario, 2010.
"A hybrid scatter search heuristic for personalized crew rostering in the airline industry,"
European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
- B. Maenhout & M. Vanhoucke, 2007. "A Hybrid Scatter Search Heuristic for Personalized Crew Rostering in the Airline Industry," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/454, Ghent University, Faculty of Economics and Business Administration.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2005-11-19 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2005045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.