IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v115y1999i2p339-350.html
   My bibliography  Save this article

A combinatorial approach to the classification problem

Author

Listed:
  • Yanev, N.
  • Balev, S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Yanev, N. & Balev, S., 1999. "A combinatorial approach to the classification problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 339-350, June.
  • Handle: RePEc:eee:ejores:v:115:y:1999:i:2:p:339-350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00229-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stam, Antonie & Joachimsthaler, Erich A., 1990. "A comparison of a robust mixed-integer approach to existing methods for establishing classification rules for the discriminant problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 113-122, May.
    2. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    3. Markowski, Carol A. & Markowski, Edward P., 1987. "An experimental comparison of several approaches to the discriminant problem with both qualitative and quantitative variables," European Journal of Operational Research, Elsevier, vol. 28(1), pages 74-78, January.
    4. Abad, P. L. & Banks, W. J., 1993. "New LP based heuristics for the classification problem," European Journal of Operational Research, Elsevier, vol. 67(1), pages 88-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    2. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    3. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    4. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    6. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    7. Saïd Hanafi & Nicola Yanev, 2011. "Tabu search approaches for solving the two-group classification problem," Annals of Operations Research, Springer, vol. 183(1), pages 25-46, March.
    8. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    9. Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    2. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    3. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    4. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    5. Lam, Kim Fung & Moy, Jane W., 2002. "Combining discriminant methods in solving classification problems in two-group discriminant analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 294-301, April.
    6. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    7. Antonie Stam & Cliff T. Ragsdale, 1992. "On the classification gap in mathematical programming‐based approaches to the discriminant problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 545-559, June.
    8. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    9. Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
    10. Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
    11. Lam, Kim Fung & Choo, Eng Ung & Moy, Jane W., 1996. "Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem," European Journal of Operational Research, Elsevier, vol. 88(2), pages 358-367, January.
    12. Saïd Hanafi & Nicola Yanev, 2011. "Tabu search approaches for solving the two-group classification problem," Annals of Operations Research, Springer, vol. 183(1), pages 25-46, March.
    13. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    14. Wilson, J. M., 1996. "Integer programming formulations of statistical classification problems," Omega, Elsevier, vol. 24(6), pages 681-688, December.
    15. Burcu Dikmen & Güray Küçükkocaoğlu, 2010. "The detection of earnings manipulation: the three-phase cutting plane algorithm using mathematical programming," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 442-466.
    16. J J Glen, 2005. "Mathematical programming models for piecewise-linear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 331-341, March.
    17. Lam, Kim Fung & Moy, Jane W., 2003. "A piecewise linear programming approach to the two-group discriminant problem - an adaptation to Fisher's linear discriminant function model," European Journal of Operational Research, Elsevier, vol. 145(2), pages 471-481, March.
    18. K Falangis & J J Glen, 2010. "Heuristics for feature selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 804-812, May.
    19. Fadime Üney-Yüksektepe, 2014. "A novel approach to cutting decision trees," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 553-565, September.
    20. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:115:y:1999:i:2:p:339-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.