IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i5d10.1057_jors.2009.24.html
   My bibliography  Save this article

Heuristics for feature selection in mathematical programming discriminant analysis models

Author

Listed:
  • K Falangis

    (University of Edinburgh)

  • J J Glen

    (University of Edinburgh)

Abstract

In developing a classification model for assigning observations of unknown class to one of a number of specified classes using the values of a set of features associated with each observation, it is often desirable to base the classifier on a limited number of features. Mathematical programming discriminant analysis methods for developing classification models can be extended for feature selection. Classification accuracy can be used as the feature selection criterion by using a mixed integer programming (MIP) model in which a binary variable is associated with each training sample observation, but the binary variable requirements limit the size of problems to which this approach can be applied. Heuristic feature selection methods for problems with large numbers of observations are developed in this paper. These heuristic procedures, which are based on the MIP model for maximizing classification accuracy, are then applied to three credit scoring data sets.

Suggested Citation

  • K Falangis & J J Glen, 2010. "Heuristics for feature selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 804-812, May.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:5:d:10.1057_jors.2009.24
    DOI: 10.1057/jors.2009.24
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.24
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.24?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
    2. Gary J. Koehler, 1991. "Linear Discriminant Functions Determined by Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 345-357, November.
    3. Stam, Antonie & Joachimsthaler, Erich A., 1990. "A comparison of a robust mixed-integer approach to existing methods for establishing classification rules for the discriminant problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 113-122, May.
    4. P. S. Bradley & O. L. Mangasarian & W. N. Street, 1998. "Feature Selection via Mathematical Programming," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 209-217, May.
    5. J J Glen, 1999. "Integer programming methods for normalisation and variable selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1043-1053, October.
    6. Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
    7. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    8. Antonie Stam, 1997. "Nontraditional approaches to statistical classification: Some perspectives on L_p-norm methods," Annals of Operations Research, Springer, vol. 74(0), pages 1-36, November.
    9. J J Glen, 2001. "Classification accuracy in discriminant analysis: a mixed integer programming approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 328-339, March.
    10. Selwyn Piramuthu, 1999. "Feature Selection for Financial Credit-Risk Evaluation Decisions," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 258-266, August.
    11. Stam, Antonie, 1990. "Extensions of mathematical programming-based classification rules: A multicriteria approach," European Journal of Operational Research, Elsevier, vol. 48(3), pages 351-361, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael O. Olusola & Sydney I. Onyeagu, 2020. "On the binary classification problem in discriminant analysis using linear programming methods," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 119-130.
    2. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    2. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    3. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    4. J J Glen, 2005. "Mathematical programming models for piecewise-linear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 331-341, March.
    5. Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
    6. J J Glen, 2008. "An additive utility mixed integer programming model for nonlinear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1492-1505, November.
    7. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    8. Haldun Aytug & Gary J. Koehler & Ling He, 2008. "Risk Minimization and Minimum Description for Linear Discriminant Functions," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 317-331, May.
    9. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    10. Lam, Kim Fung & Moy, Jane W., 2002. "Combining discriminant methods in solving classification problems in two-group discriminant analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 294-301, April.
    11. Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
    12. Lam, Kim Fung & Choo, Eng Ung & Moy, Jane W., 1996. "Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem," European Journal of Operational Research, Elsevier, vol. 88(2), pages 358-367, January.
    13. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    14. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    15. Antonie Stam & Cliff T. Ragsdale, 1992. "On the classification gap in mathematical programming‐based approaches to the discriminant problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 545-559, June.
    16. Lau, Kin-nam & Leung, Pui-lam & Tse, Ka-kit, 1999. "A mathematical programming approach to clusterwise regression model and its extensions," European Journal of Operational Research, Elsevier, vol. 116(3), pages 640-652, August.
    17. Sudhir Nanda & Parag Pendharkar, 2001. "Linear models for minimizing misclassification costs in bankruptcy prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(3), pages 155-168, September.
    18. Yanev, N. & Balev, S., 1999. "A combinatorial approach to the classification problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 339-350, June.
    19. Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
    20. Burcu Dikmen & Güray Küçükkocaoğlu, 2010. "The detection of earnings manipulation: the three-phase cutting plane algorithm using mathematical programming," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 442-466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:5:d:10.1057_jors.2009.24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.