IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i12p1947-1965.html
   My bibliography  Save this article

Forecasting credit ratings with the varying-coefficient model

Author

Listed:
  • Ruey-Ching Hwang

Abstract

The dynamic ordered varying-coefficient probit model (DOVPM) is proposed as a model for studying credit ratings. It is constructed by replacing the constant coefficients of firm-specific predictors in the dynamic ordered probit model (DOPM) of Blume, Lim and MacKinlay (1998) with the smooth functions of macroeconomic variables. Thus, the proposed model allows the effects of firm-specific predictors on credit risk to change with macroeconomic dynamics as investigated by Pesaran, Schuermann, Treutler and Weiner in 2006. The unknown coefficient functions in DOVPM are estimated using a local maximum likelihood method. Real data examples for studying credit ratings are used to illustrate the proposed model. Our empirical results show that macroeconomic dynamics significantly affect the sensitivities of firm-specific predictors on credit ratings, and there are nonlinear relationships between them. Comparing the out-of-sample performance of DOPM and DOVPM using an expanding rolling window approach, our empirical results confirm that the advantages of DOVPM over DOPM are twofold. First, the out-of-sample firm-by-firm rating probabilities predicted by DOVPM are more accurate and robust. Second, the out-of-sample total error rates of the prediction rule based on DOVPM are not only of smaller magnitudes but also of lower volatility. Thus, the proposed DOVPM is a useful alternative for credit rating forecasting.

Suggested Citation

  • Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1947-1965
    DOI: 10.1080/14697688.2012.738935
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.738935
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.738935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    2. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    3. Naisyin Wang, 2003. "Marginal nonparametric kernel regression accounting for within-subject correlation," Biometrika, Biometrika Trust, vol. 90(1), pages 43-52, March.
    4. Ruey-Ching Hwang, 2013. "Predicting issuer credit ratings using generalized estimating equations," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 383-398, February.
    5. repec:bla:jfinan:v:53:y:1998:i:4:p:1389-1413 is not listed on IDEAS
    6. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    7. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 03-98, Wharton School Rodney L. White Center for Financial Research.
    8. West, Rr, 1970. "Alternative Approach To Predicting Corporate Bond Ratings," Journal of Accounting Research, Wiley Blackwell, vol. 8(1), pages 118-125.
    9. Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
    10. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    11. repec:fth:pennfi:67 is not listed on IDEAS
    12. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 3-98, Wharton School Rodney L. White Center for Financial Research.
    13. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    14. Chung‐Hua Shen & Hsiang‐Lin Chih, 2007. "Earnings Management and Corporate Governance in Asia's Emerging Markets," Corporate Governance: An International Review, Wiley Blackwell, vol. 15(5), pages 999-1021, September.
    15. Poon, Winnie P. H., 2003. "Are unsolicited credit ratings biased downward?," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 593-614, April.
    16. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    17. Guttler, Andre & Wahrenburg, Mark, 2007. "The adjustment of credit ratings in advance of defaults," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 751-767, March.
    18. Pinches, George E & Mingo, Kent A, 1973. "A Multivariate Analysis of Industrial Bond Ratings," Journal of Finance, American Finance Association, vol. 28(1), pages 1-18, March.
    19. Ruey‐Ching Hwang & K. F. Cheng & Cheng‐Few Lee, 2009. "On multiple‐class prediction of issuer credit ratings," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 535-550, September.
    20. Cheng, Ming-Yen & Zhang, Wenyang & Chen, Lu-Hung, 2009. "Statistical Estimation in Generalized Multiparameter Likelihood Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1179-1191.
    21. Kaplan, Robert S & Urwitz, Gabriel, 1979. "Statistical Models of Bond Ratings: A Methodological Inquiry," The Journal of Business, University of Chicago Press, vol. 52(2), pages 231-261, April.
    22. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    23. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    24. Horrigan, Jo, 1966. "Determination Of Long-Term Credit Standing With Financial Ratios," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 44-62.
    25. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salihu, Armend & Shehu, Visar, 2020. "A Review of Algorithms for Credit Risk Analysis," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2020), Virtual Conference, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Virtual Conference, 10-12 September 2020, pages 134-146, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    2. Carlo Alberto Magni & Stefano Malagoli & Andrea Marchioni & Giovanni Mastroleo, 2020. "Rating firms and sensitivity analysis," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(12), pages 1940-1958, December.
    3. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
    4. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    5. Lin, Yi-Chen & Hwang, Ruey-Ching & Deng, Wen-Shuenn, 2015. "Heterogeneity in the relationship between subjective well-being and its determinants over the life cycle: A varying-coefficient ordered probit approach," Economic Modelling, Elsevier, vol. 49(C), pages 372-386.
    6. Doumpos, Michael & Niklis, Dimitrios & Zopounidis, Constantin & Andriosopoulos, Kostas, 2015. "Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 599-607.
    7. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    2. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    3. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    4. Ruey‐Ching Hwang & K. F. Cheng & Cheng‐Few Lee, 2009. "On multiple‐class prediction of issuer credit ratings," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 535-550, September.
    5. Jens Hilscher & Mungo Wilson, 2017. "Credit Ratings and Credit Risk: Is One Measure Enough?," Management Science, INFORMS, vol. 63(10), pages 3414-3437, October.
    6. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    7. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.
    8. Afef Feki Krichene & Walid Khoufi, 2016. "On the Nonlinearity of the Financial Ratios-Credit Ratings Relationship," Applied Finance and Accounting, Redfame publishing, vol. 2(2), pages 65-70, August.
    9. Chen, Jie & Hill, Paula, 2013. "The impact of diverse measures of default risk on UK stock returns," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5118-5131.
    10. Manish K. Singh & Marta Gómez-Puig & Simón Sosvilla-Rivero, 2014. "Forward looking banking stress in EMU countries," Working Papers 14-10, Asociación Española de Economía y Finanzas Internacionales.
    11. Koresh Galil, 2005. "Ratings as Predictors of Default in the Long Term:an Empirical Investigation," Working Papers 0505, Ben-Gurion University of the Negev, Department of Economics.
    12. Manzoni, Katiuscia, 2004. "Modeling Eurobond credit ratings and forecasting downgrade probability," International Review of Financial Analysis, Elsevier, vol. 13(3), pages 277-300.
    13. Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Informational efficiency of credit ratings," Working Papers 14, xKDR.
    14. Ruey-Ching Hwang & Huimin Chung & C. K. Chu, 2016. "A Two-Stage Probit Model for Predicting Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 311-339, December.
    15. Marta Gómez-Puig & Simón Sosvilla-Rivero & Manish K. Singh, 2018. "“Incorporating creditors' seniority into contingent claim models:Application to peripheral euro area countries”," IREA Working Papers 201803, University of Barcelona, Research Institute of Applied Economics, revised Feb 2018.
    16. Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
    17. Singh, Manish K. & Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2015. "Bank risk behavior and connectedness in EMU countries," Journal of International Money and Finance, Elsevier, vol. 57(C), pages 161-184.
    18. Jens Hilscher & Mungo Wilson, 2011. "Credit ratings and credit risk," Working Papers 31, Brandeis University, Department of Economics and International Business School.
    19. Azmat, Saad & Skully, Michael & Brown, Kym, 2017. "The (little) difference that makes all the difference between Islamic and conventional bonds," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 46-59.
    20. Emilia Bonaccorsi di Patti & Alessio D’Ignazio & Marco Gallo & Giacinto Micucci, 2015. "The Role of Leverage in Firm Solvency: Evidence From Bank Loans," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(2), pages 253-286, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1947-1965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.