IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v29y2001i3p291-297.html
   My bibliography  Save this article

Three-group classification with unequal misclassification costs: a mathematical programming approach

Author

Listed:
  • Loucopoulos, Constantine

Abstract

Mathematical programming approaches to the statistical classification problem have attracted considerable research interest since the early 1980s. In this paper a mixed-integer programming model is proposed for the minimization of misclassification costs in the three-group problem. In the proposed model, distinct costs c(h g) can be assigned to the misclassification of an observation from one group to either of the other two groups. The standard parametric classification procedures (Fisher's linear discriminant function and Smith's quadratic discriminant function), as incorporated in commonly used statistical packages like SAS, SPSS and MINITAB, do not allow the assignment of distinct costs c(h g), when the number of groups is three or more. Using MBA admissions data, it is shown that the proposed model may be useful in assisting an academic institution in its screening of MBA applications, once the relative costs of erroneous admission decisions are assessed.

Suggested Citation

  • Loucopoulos, Constantine, 2001. "Three-group classification with unequal misclassification costs: a mathematical programming approach," Omega, Elsevier, vol. 29(3), pages 291-297, June.
  • Handle: RePEc:eee:jomega:v:29:y:2001:i:3:p:291-297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00023-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Gehrlein & Bret Wagner, 1997. "A two-stage least cost credit scoring model," Annals of Operations Research, Springer, vol. 74(0), pages 159-171, November.
    2. A. Duarte Silva & Antonie Stam, 1997. "A mixed integer programming algorithm for minimizing the training sample misclassification cost in two-group classification," Annals of Operations Research, Springer, vol. 74(0), pages 129-157, November.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    6. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    7. Wilson, J. M., 1996. "Integer programming formulations of statistical classification problems," Omega, Elsevier, vol. 24(6), pages 681-688, December.
    8. Hosseini, Jamshid C. & Armacost, Robert L., 1994. "The two-group discriminant problem with equal group mean vectors: An experimental evaluation of six linear/nonlinear programming formulations," European Journal of Operational Research, Elsevier, vol. 77(2), pages 241-252, September.
    9. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    10. Constantine Loucopoulos & Robert Pavur, 1997. "Experimental evaluation of the classificatory performance of mathematical programming approaches to the three-group discriminant problem: The case of small samples," Annals of Operations Research, Springer, vol. 74(0), pages 191-209, November.
    11. Moore, James S, 1998. "An Expert System Approach to Graduate School Admission Decisions and Academic Performance Prediction," Omega, Elsevier, vol. 26(5), pages 659-670, October.
    12. Lam, Kim Fung & Choo, Eng Ung & Moy, Jane W., 1996. "Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem," European Journal of Operational Research, Elsevier, vol. 88(2), pages 358-367, January.
    13. Willy Gochet & Antonie Stam & V. Srinivasan & Shaoxiang Chen, 1997. "Multigroup Discriminant Analysis Using Linear Programming," Operations Research, INFORMS, vol. 45(2), pages 213-225, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    2. Peng, Yi & Kou, Gang & Wang, Guoxun & Shi, Yong, 2011. "FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms," Omega, Elsevier, vol. 39(6), pages 677-689, December.
    3. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    2. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    3. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    4. Ostermark, Ralf & Hoglund, Rune, 1998. "Addressing the multigroup discriminant problem using multivariate statistics and mathematical programming," European Journal of Operational Research, Elsevier, vol. 108(1), pages 224-237, July.
    5. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    6. Roe, R.A. & Smeelen, M. & Hoefeld, C., 2005. "Outsourcing and organizational change : an employee perspective," Research Memorandum 045, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    8. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    9. Espahbodi, Hassan & Espahbodi, Pouran, 2003. "Binary choice models and corporate takeover," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 549-574, April.
    10. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    11. Carrizosa, E. & Martin-Barragán, B. & Plastria, F. & Romero Morales, M.D., 2002. "A Dissimilarity-based approach for Classification," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
    13. Doumpos, M. & Kosmidou, K. & Baourakis, G. & Zopounidis, C., 2002. "Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 392-412, April.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    15. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    16. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    17. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    18. Alina Mihaela Dima & Simona Vasilache, 2016. "Credit Risk modeling for Companies Default Prediction using Neural Networks," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 127-143, September.
    19. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    20. Parag Pendharkar & Marvin Troutt, 2014. "Interactive classification using data envelopment analysis," Annals of Operations Research, Springer, vol. 214(1), pages 125-141, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:29:y:2001:i:3:p:291-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.