IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i7p1214-1229.html
   My bibliography  Save this article

Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment

Author

Listed:
  • Oguzhan Cepni
  • Ibrahim Ethem Guney
  • Doruk Kucuksarac
  • M. Hasan Yilmaz

Abstract

This paper investigates the relation between yield curve and macroeconomic factors for 10 emerging sovereign bond markets using the sample from January 2006 to April 2019. To this end, the diffusion indices obtained under four categories (global variables, inflation, domestic financial variables, and economic activity) are incorporated by estimating dynamic panel data regressions together with the yield curve factors. Besides, in order to capture dynamic interaction between yield curve and macroeconomic/financial factors, a panel vector autoregressive (VAR) analysis based on the system generalized method of moments (GMM) approach is utilized. Empirical results suggest that the level factor responds to shocks originated from inflation, domestic financial variables, and global variables. Furthermore, the slope factor is affected by shocks in global variables, and the curvature factor appears to be influenced by domestic financial variables. We also show that macroeconomic/financial factors captures significant predictive information over yield curve factors by running individual country factor‐augmented predictive regressions and variable selection algorithms such ridge regression, least absolute shrinkage operator (LASSO), and Elastic Net. Our findings have important implications for policymakers and fund managers by explaining the underlying forces of movements in the yield curve and forecasting accurately dynamics of yield curve factors.

Suggested Citation

  • Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021. "Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1214-1229
    DOI: 10.1002/for.2763
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2763
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    2. Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013. "Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Jotikasthira, Chotibhak & Le, Anh & Lundblad, Christian, 2015. "Why do term structures in different currencies co-move?," Journal of Financial Economics, Elsevier, vol. 115(1), pages 58-83.
    6. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    7. Oguzhan Cepni & I. Ethem Guney, 2019. "Nowcasting emerging market’s GDP: the importance of dimension reduction techniques," Applied Economics Letters, Taylor & Francis Journals, vol. 26(20), pages 1670-1674, November.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. Wali Ullah, 2016. "Affine Term Structure Model with Macroeconomic Factors: Do No‐Arbitrage Restriction and Macroeconomic Factors Imply Better Out‐of‐Sample Forecasts?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 329-346, July.
    10. Umar Farooq & Muhammad Ali Jibran Qamar, 2019. "Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 632-648, November.
    11. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
    12. Paccagnini, Alessia, 2016. "The macroeconomic determinants of the US term structure during the Great Moderation," Economic Modelling, Elsevier, vol. 52(PA), pages 216-225.
    13. Jan Ditzen, 2018. "Estimating dynamic common-correlated effects in Stata," Stata Journal, StataCorp LP, vol. 18(3), pages 585-617, September.
    14. Kanjilal, Kakali, 2013. "Factors causing movements of yield curve in India," Economic Modelling, Elsevier, vol. 31(C), pages 739-751.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    17. Miyajima, Ken & Mohanty, M.S. & Chan, Tracy, 2015. "Emerging market local currency bonds: Diversification and stability," Emerging Markets Review, Elsevier, vol. 22(C), pages 126-139.
    18. repec:hal:journl:peer-00844811 is not listed on IDEAS
    19. Mr. Rodrigo Cabral & Mr. Richard Munclinger & Mr. Luiz Alves & Mr. Marco Rodriguez Waldo, 2011. "On Brazil’s Term Structure: Stylized Facts and Analysis of Macroeconomic Interactions," IMF Working Papers 2011/113, International Monetary Fund.
    20. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    21. Michael R. M. Abrigo & Inessa Love, 2016. "Estimation of panel vector autoregression in Stata," Stata Journal, StataCorp LP, vol. 16(3), pages 778-804, September.
    22. Nobuhiko Terui & Yinxing Li, 2019. "Measuring large‐scale market responses and forecasting aggregated sales: Regression for sparse high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 440-458, August.
    23. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    24. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    25. David Roodman, 2006. "How to Do xtabond2," North American Stata Users' Group Meetings 2006 8, Stata Users Group.
    26. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    27. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    28. Lu, Biao & Wu, Liuren, 2009. "Macroeconomic releases and the interest rate term structure," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 872-884, September.
    29. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    30. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    31. Michael R.M. Abrigo & Inessa Love, 2016. "Estimation of Panel Vector Autoregression in Stata: a Package of Programs," Working Papers 201602, University of Hawaii at Manoa, Department of Economics.
    32. Philip D Wooldridge & Dietrich Domanski & Anna Cobau, 2003. "Changing links between mature and emerging financial markets," BIS Quarterly Review, Bank for International Settlements, September.
    33. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    34. Wali Ullah & Yoshihiko Tsukuda & Yasumasa Matsuda, 2013. "Term Structure Forecasting of Government Bond Yields with Latent and Macroeconomic Factors: Do Macroeconomic Factors Imply Better Out‐of‐Sample Forecasts?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 702-723, December.
    35. David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
    36. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    37. Argyropoulos, Efthymios & Tzavalis, Elias, 2016. "Forecasting economic activity from yield curve factors," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 293-311.
    38. Parley Ruogu Yang, 2020. "Using the yield curve to forecast economic growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1057-1080, November.
    39. Alicia Garcia-Herrero & Philip Wooldridge, 2007. "Global and regional financial integration: progress in emerging markets," BIS Quarterly Review, Bank for International Settlements, September.
    40. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    41. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    42. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    43. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    44. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    45. Wali Ullah & Yoshihiko Tsukuda & Yasumasa Matsuda, 2012. "Term Structure Forecasting of Government Bond Yields with Latent and Macroeconomic Factors: Does Macroeconomic Factors Imply Better Out-of-Sample Forecasts?," TERG Discussion Papers 287, Graduate School of Economics and Management, Tohoku University.
    46. Krishna Prasanna & Subramaniam Sowmya, 2017. "Yield curve in India and its interactions with the US bond market," International Economics and Economic Policy, Springer, vol. 14(2), pages 353-375, April.
    47. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangdong Shen & Junbin Wang & Li Wang & Chunlan Jiao, 2023. "Forecasting the different influencing factors of household food waste behavior in China under the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2322-2340, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hertweck, Matthias & Brey, Bjoern, 2017. "The Persistent Effects of Monsoon Rainfall Shocks in India: A Nonlinear VAR Approach," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168256, Verein für Socialpolitik / German Economic Association.
    2. Joan Costa-Font & Cristina Vilaplana-Prieto, 2023. "‘Investing’ in care for old age? An examination of long-term care expenditure dynamics and its spillovers," Empirical Economics, Springer, vol. 64(1), pages 1-30, January.
    3. Sigmund, Michael & Ferstl, Robert, 2021. "Panel vector autoregression in R with the package panelvar," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 693-720.
    4. Zouaoui, Haykel & Zoghlami, Feten, 2020. "On the income diversification and bank market power nexus in the MENA countries: Evidence from a GMM panel-VAR approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    5. Scott, K. Rebecca, 2011. "Demand and price volatility: rational habits in international gasoline demand," CUDARE Working Papers 121931, University of California, Berkeley, Department of Agricultural and Resource Economics.
    6. Kacou Yves Thierry Kacou & Yacouba Kassouri & Andrew Adewale Alola & Mehmet Altuntaş, 2022. "Examining the sustainable development approach of migrants' remittances and financial development in sub‐Saharan African countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 804-816, October.
    7. Vu, K.M., 2017. "Structural change and economic growth: Empirical evidence and policy insights from Asian economies," Structural Change and Economic Dynamics, Elsevier, vol. 41(C), pages 64-77.
    8. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    9. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    10. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    11. Sumon Kumar Bhaumik & Manisha Chakrabarty & Ali M. Kutan & Ekta Selarka, 2021. "How Effective are Stock Market Reforms in Emerging Market Economies? Evidence from a Panel VAR Model of the Indian Stock Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 795-818, December.
    12. Jaunky, Vishal Chandr, 2013. "A cointegration and causality analysis of copper consumption and economic growth in rich countries," Resources Policy, Elsevier, vol. 38(4), pages 628-639.
    13. David C. López-Valenzuela & Enrique Montes-Uribe & Héctor M. Zárate-Solano & Alvaro Carmona-Duarte, 2019. "Determinantes y evolución entre precios y cantidades de las exportaciones industriales de Colombia: un estudio a partir de un modelo de Panel-VAR," Borradores de Economia 1075, Banco de la Republica de Colombia.
    14. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    15. Robert A. Baade & Robert W. Baumann & Victor A. Matheson, 2008. "Assessing the Economic Impact of College Football Games on Local Economies," Journal of Sports Economics, , vol. 9(6), pages 628-643, December.
    16. López-Mendoza, Héctor & González-Álvarez, María A. & Montañés, Antonio, 2024. "Assessing the effectiveness of international government responses to the COVID-19 pandemic," Economics & Human Biology, Elsevier, vol. 52(C).
    17. Ansgar Belke & Holger Zemanek & Gunther Schnabl, 2010. "Current Account Balances and Structural Adjustment in the Euro Area," Ruhr Economic Papers 0176, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    18. Mitze, Timo & Reinkowski, Janina, 2010. "Testing the Validity of the Neoclassical Migration Model: Overall and Age-Group Specific Estimation Results for German Spatial Planning Regions," MPRA Paper 23616, University Library of Munich, Germany.
    19. Jaunky, Vishal Chandr, 2012. "Is there a material Kuznets curve for aluminium? evidence from rich countries," Resources Policy, Elsevier, vol. 37(3), pages 296-307.
    20. repec:zbw:rwirep:0176 is not listed on IDEAS
    21. Robert A Baade & Robert Baumann & Victor A Matheson, 2009. "Rejecting “Conventional” Wisdom: Estimating the Economic Impact of National Political Conventions," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 35(4), pages 520-530.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • F2 - International Economics - - International Factor Movements and International Business
    • F3 - International Economics - - International Finance
    • F4 - International Economics - - Macroeconomic Aspects of International Trade and Finance
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1214-1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.