IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i7p632-648.html
   My bibliography  Save this article

Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria

Author

Listed:
  • Umar Farooq
  • Muhammad Ali Jibran Qamar

Abstract

This research proposes a prediction model of multistage financial distress (MSFD) after considering contextual and methodological issues regarding sampling, feature and model selection criteria. Financial distress is defined as a three‐stage process showing different nature and intensity of financial problems. It is argued that applied definition of distress is independent of legal framework and its predictability would provide more practical solutions. The final sample is selected after industry adjustments and oversampling the data. A wrapper subset data mining approach is applied to extract the most relevant features from financial statement and stock market indicators. An ensemble approach using a combination of DTNB (decision table and naïve base hybrid model), LMT (logistic model tree) and A2DE (alternative N dependence estimator) Bayesian models is used to develop the final prediction model. The performance of all the models is evaluated using a 10‐fold cross‐validation method. Results showed that the proposed model predicted MSFD with 84.06% accuracy. This accuracy increased to 89.57% when a 33.33% cut‐off value was considered. Hence the proposed model is accurate and reliable to identify the true nature and intensity of financial problems regardless of the contextual legal framework.

Suggested Citation

  • Umar Farooq & Muhammad Ali Jibran Qamar, 2019. "Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 632-648, November.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:7:p:632-648
    DOI: 10.1002/for.2588
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2588
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Qiu & Jiabei He & Zhensong Chen & Yinhong Yao & Yi Qu, 2024. "A novel semisupervised learning method with textual information for financial distress prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2478-2494, November.
    2. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    3. Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021. "Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
    4. Umair Bin YOUSAF & Khalil JEBRAN & Man WANG, 2022. "A Comparison of Static, Dynamic and Machine Learning Models in Predicting the Financial Distress of Chinese Firms," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 122-138, April.
    5. Toto Gunarto & Rialdi Azhar & Novita Tresiana & Supriyanto Supriyanto & Ayi Ahadiat, 2020. "Accurate Estimated Model of Volatility Crude Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 228-233.
    6. Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
    7. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    8. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    9. Yang Liu & Qingguo Zeng & Bobo Li & Lili Ma & Joaquín Ordieres‐Meré, 2022. "Anticipating financial distress of high‐tech startups in the European Union: A machine learning approach for imbalanced samples," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1131-1155, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:7:p:632-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.