IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i7p1057-1080.html
   My bibliography  Save this article

Using the yield curve to forecast economic growth

Author

Listed:
  • Parley Ruogu Yang

Abstract

This paper finds the yield curve to have a well‐performing ability to forecast the real gross domestic product growth in the USA, compared to professional forecasters and time series models. Past studies have different arguments concerning growth lags, structural breaks, and ultimately the ability of the yield curve to forecast economic growth. This paper finds such results to be dependent on the estimation and forecasting techniques employed. By allowing various interest rates to act as explanatory variables and various window sizes for the out‐of‐sample forecasts, significant forecasts from many window sizes can be found. These seemingly good forecasts may face issues, including persistent forecasting errors. However, by using statistical learning algorithms, such issues can be cured to some extent. The overall result suggests, by scientifically deciding the window sizes, interest rate data, and learning algorithms, many outperforming forecasts can be produced for all lags from one quarter to 3 years, although some may be worse than the others due to the irreducible noise of the data.

Suggested Citation

  • Parley Ruogu Yang, 2020. "Using the yield curve to forecast economic growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1057-1080, November.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:7:p:1057-1080
    DOI: 10.1002/for.2676
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2676
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Gebhard Kirchgässner & Jürgen Wolters & Uwe Hassler, 2013. "Introduction to Modern Time Series Analysis," Springer Texts in Business and Economics, Springer, edition 2, number 978-3-642-33436-8, December.
    3. Felix Geiger, 2011. "The Yield Curve and Financial Risk Premia," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-21575-9, October.
    4. Menzie Chinn & Kavan Kucko, 2015. "The Predictive Power of the Yield Curve Across Countries and Time," International Finance, Wiley Blackwell, vol. 18(2), pages 129-156, June.
    5. repec:cup:cbooks:9780521835954 is not listed on IDEAS
    6. Pierangelo De Pace, 2013. "Gross Domestic Product Growth Predictions Through The Yield Spread: Time‐Variation And Structural Breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-24, January.
    7. Arturo Estrella, 2005. "Why Does the Yield Curve Predict Output and Inflation?," Economic Journal, Royal Economic Society, vol. 115(505), pages 722-744, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Winkelmann & Wenying Yao, 2024. "Tests for Jumps in Yield Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 946-957, July.
    2. Montes, Gabriel Caldas & Maia, João Pedro Neves, 2023. "Who speaks louder, financial instruments or credit rating agencies? Analyzing the effects of different sovereign risk measures on interest rates in Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    3. Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021. "Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
    4. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    2. Christiansen, Charlotte, 2013. "Predicting severe simultaneous recessions using yield spreads as leading indicators," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.
    3. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    4. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    5. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    6. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    7. De Pace, Pierangelo & Weber, Kyle D., 2016. "The time-varying leading properties of the high yield spread in the United States," International Journal of Forecasting, Elsevier, vol. 32(1), pages 203-230.
    8. Michael T. Kiley, 2023. "Recession Signals and Business Cycle Dynamics: Tying the Pieces Together," Finance and Economics Discussion Series 2023-008, Board of Governors of the Federal Reserve System (U.S.).
    9. Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
    10. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    11. Evgenidis, Anastasios & Papadamou, Stephanos & Siriopoulos, Costas, 2020. "The yield spread's ability to forecast economic activity: What have we learned after 30 years of studies?," Journal of Business Research, Elsevier, vol. 106(C), pages 221-232.
    12. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    13. Todd J. BARRY, 2020. "Causes of the curve: Assessing risk in public and private financial economics," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(623), S), pages 109-130, Summer.
    14. Geert Bekaert & Seonghoon Cho & Antonio Moreno, 2010. "New Keynesian Macroeconomics and the Term Structure," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 33-62, February.
    15. Nakaota, Hiroshi & Fukuta, Yuichi, 2013. "The leading indicator property of the term spread and the monetary policy factors in Japan," Japan and the World Economy, Elsevier, vol. 28(C), pages 85-98.
    16. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    17. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    18. Nicolas Chatelais & Menzie Chinn & Arthur Stalla-Bourdillon, 2022. "Macroeconomic Forecasting Using Filtered Signals from a Stock Market Cross Section," Working papers 903, Banque de France.
    19. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
    20. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:7:p:1057-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.