Using social media mining technology to improve stock price forecast accuracy
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2616
Download full text from publisher
References listed on IDEAS
- Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
- Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
- Steve Y. Yang & Sheung Yin Kevin Mo & Anqi Liu, 2015. "Twitter financial community sentiment and its predictive relationship to stock market movement," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1637-1656, October.
- Rechenthin, Michael & Street, W. Nick & Srinivasan, Padmini, 2013. "Stock chatter: Using stock sentiment to predict price direction," Algorithmic Finance, IOS Press, vol. 2(3-4), pages 169-196.
- Kanas, Angelos & Yannopoulos, Andreas, 2001. "Comparing linear and nonlinear forecasts for stock returns," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 383-398, December.
- Jia-Yen Huang, 2014. "Innovative replenishment management for perishable items using logistic regression and grey analysis," International Journal of Business Performance Management, Inderscience Enterprises Ltd, vol. 15(2), pages 138-157.
- G. Rubbaniy & Robel Asmerom & Syed Kumail Abbas Rizvi & Bushra Naqvi, 2014. "Do fear indices help predict stock returns?," Quantitative Finance, Taylor & Francis Journals, vol. 14(5), pages 831-847, May.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Juanjuan Wang & Shujie Zhou & Wentong Liu & Lin Jiang, 2024. "An ensemble model for stock index prediction based on media attention and emotional causal inference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1998-2020, September.
- M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
- Weiguo Zhang & Xue Gong & Chao Wang & Xin Ye, 2021. "Predicting stock market volatility based on textual sentiment: A nonlinear analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1479-1500, December.
- Steven Buigut and Burcu Kapar, 2022. "Do COVID-19 Incidence and Government Intervention Influence Media Indices?," Bulletin of Applied Economics, Risk Market Journals, vol. 9(2), pages 79-100.
- Chorong Youn & Hye Jung Jung, 2021. "Semantic Network Analysis to Explore the Concept of Sustainability in the Apparel and Textile Industry," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
- Farnoush Ronaghi & Mohammad Salimibeni & Farnoosh Naderkhani & Arash Mohammadi, 2021. "COVID19-HPSMP: COVID-19 Adopted Hybrid and Parallel Deep Information Fusion Framework for Stock Price Movement Prediction," Papers 2101.02287, arXiv.org, revised Jul 2021.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wang, Xinjie & Xiang, Zhiqiang & Xu, Weike & Yuan, Peixuan, 2022. "The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum," Economics Letters, Elsevier, vol. 216(C).
- Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
- Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
- Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
- Qingshuo Song & Qing Zhang, 2013. "An Optimal Pairs-Trading Rule," Papers 1302.6120, arXiv.org.
- Eryka Probierz & Adam Galuszka & Katarzyna Klimczak & Karol Jedrasiak & Tomasz Wisniewski & Tomasz Dzida, 2021. "Financial Sentiment on Twitter's Community and it's Connection to Polish Stock Market Movements in Context of Behavior Modelling," European Research Studies Journal, European Research Studies Journal, vol. 0(4 - Part ), pages 56-65.
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022.
"Media-expressed tone, option characteristics, and stock return predictability,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2019. "Media-expressed tone, Option Characteristics, and Stock Return Predictability," IRTG 1792 Discussion Papers 2019-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Thomas Renault, 2020.
"Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,"
Digital Finance, Springer, vol. 2(1), pages 1-13, September.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205149, HAL.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Post-Print hal-03205149, HAL.
- Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Yardley, Ben, 2020. "The Effects of Donald Trump’s Tweets on The Stock Exchange," MPRA Paper 102578, University Library of Munich, Germany.
- Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:104-116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.