IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v37y2022i5p988-1009.html
   My bibliography  Save this article

Extremal connectedness of hedge funds

Author

Listed:
  • Linda Mhalla
  • Julien Hambuckers
  • Marie Lambert

Abstract

We propose a dynamic measure of extremal connectedness tailored to the short reporting period and unbalanced nature of hedge funds data. Using multivariate extreme value regression techniques, we estimate this measure conditional on factors reflecting the economic uncertainty and the state of the financial markets, and derive risk indicators reflecting the likelihood of extreme spillovers. Empirically, we study the dynamics of tail dependencies between hedge funds grouped per investment strategies, as well as with the banking sector. We show that during crisis periods, some pairs of strategies display an increase in their extremal connectedness, revealing a higher likelihood of simultaneous extreme losses. We also find a sizable tail dependence between hedge funds and banks, indicating that banks are more likely to suffer extreme losses when the hedge fund sector does. Our results highlight that a proactive regulatory framework should account for the dynamic nature of the tail dependence and its link with financial stress.

Suggested Citation

  • Linda Mhalla & Julien Hambuckers & Marie Lambert, 2022. "Extremal connectedness of hedge funds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 988-1009, August.
  • Handle: RePEc:wly:japmet:v:37:y:2022:i:5:p:988-1009
    DOI: 10.1002/jae.2900
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2900
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mitchell, Mark & Pulvino, Todd, 2012. "Arbitrage crashes and the speed of capital," Journal of Financial Economics, Elsevier, vol. 104(3), pages 469-490.
    2. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    3. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Hale, Galina & Lopez, Jose A., 2019. "Monitoring banking system connectedness with big data," Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
    6. Chen Zhou, 2010. "Are Banks Too Big to Fail? Measuring Systemic Importance of Financial Institutions," International Journal of Central Banking, International Journal of Central Banking, vol. 6(34), pages 205-250, December.
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    8. Julien Hambuckers & Andreas Groll & Thomas Kneib, 2018. "Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 898-935, September.
    9. Agarwal, Vikas & Ruenzi, Stefan & Weigert, Florian, 2017. "Tail risk in hedge funds: A unique view from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 125(3), pages 610-636.
    10. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
    11. Cao, Charles & Chen, Yong & Liang, Bing & Lo, Andrew W., 2013. "Can hedge funds time market liquidity?," Journal of Financial Economics, Elsevier, vol. 109(2), pages 493-516.
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    13. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    14. Ang, Andrew & Gorovyy, Sergiy & van Inwegen, Gregory B., 2011. "Hedge fund leverage," Journal of Financial Economics, Elsevier, vol. 102(1), pages 102-126, October.
    15. Balla, Eliana & Ergen, Ibrahim & Migueis, Marco, 2014. "Tail dependence and indicators of systemic risk for large US depositories," Journal of Financial Stability, Elsevier, vol. 15(C), pages 195-209.
    16. Maarten van Oordt & Chen Zhou, 2019. "Systemic risk and bank business models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 365-384, April.
    17. Sheridan Titman & Cristian Tiu, 2011. "Do the Best Hedge Funds Hedge?," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 123-168.
    18. Raphaël Huser & Jennifer L. Wadsworth, 2019. "Modeling Spatial Processes with Unknown Extremal Dependence Class," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 434-444, January.
    19. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    20. King, Michael R. & Maier, Philipp, 2009. "Hedge funds and financial stability: Regulating prime brokers will mitigate systemic risks," Journal of Financial Stability, Elsevier, vol. 5(3), pages 283-297, September.
    21. Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019. "LASSO-type penalization in the framework of generalized additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
    22. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    23. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    24. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2014. "Macroeconomic risk and hedge fund returns," Journal of Financial Economics, Elsevier, vol. 114(1), pages 1-19.
    25. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    26. Ferson, Wayne E & Schadt, Rudi W, 1996. "Measuring Fund Strategy and Performance in Changing Economic Conditions," Journal of Finance, American Finance Association, vol. 51(2), pages 425-461, June.
    27. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    28. Adam L. Aiken & Christopher P. Clifford & Jesse Ellis, 2013. "Out of the Dark: Hedge Fund Reporting Biases and Commercial Databases," The Review of Financial Studies, Society for Financial Studies, vol. 26(1), pages 208-243.
    29. Nicole M. Boyson & Christof W. Stahel & René M. Stulz, 2010. "Hedge Fund Contagion and Liquidity Shocks," Journal of Finance, American Finance Association, vol. 65(5), pages 1789-1816, October.
    30. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    31. van Oordt, Maarten R. C. & Zhou, Chen, 2016. "Systematic Tail Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 685-705, April.
    32. Nickerson, Jordan & Griffin, John M., 2017. "Debt correlations in the wake of the financial crisis: What are appropriate default correlations for structured products?," Journal of Financial Economics, Elsevier, vol. 125(3), pages 454-474.
    33. Karagiannis, Nikolaos & Tolikas, Konstantinos, 2019. "Tail Risk and the Cross-Section of Mutual Fund Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(1), pages 425-447, February.
    34. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    35. L. Mhalla & M. de Carvalho & V. Chavez‐Demoulin, 2019. "Regression‐type models for extremal dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(4), pages 1141-1167, December.
    36. Itzhak Ben-David & Francesco Franzoni & Rabih Moussawi, 2012. "Hedge Fund Stock Trading in the Financial Crisis of 2007--2009," The Review of Financial Studies, Society for Financial Studies, vol. 25(1), pages 1-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lu & Hamori, Shigeyuki, 2023. "Modeling the global sovereign credit network under climate change," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    3. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Vikas & Green, T. Clifton & Ren, Honglin, 2018. "Alpha or beta in the eye of the beholder: What drives hedge fund flows?," Journal of Financial Economics, Elsevier, vol. 127(3), pages 417-434.
    2. Andrew W. Lo & Mila Getmansky & Peter A. Lee, 2015. "Hedge Funds: A Dynamic Industry in Transition," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 483-577, December.
    3. Dragomirescu-Gaina, Catalin & Philippas, Dionisis & Tsionas, Mike G., 2021. "Trading off accuracy for speed: Hedge funds' decision-making under uncertainty," International Review of Financial Analysis, Elsevier, vol. 75(C).
    4. Agarwal, Vikas & Green, Tracy Clifton & Ren, Honglin, 2017. "Alpha or beta in the eye of the beholder: What drives hedge fund flows?," CFR Working Papers 15-08, University of Cologne, Centre for Financial Research (CFR), revised 2017.
    5. Agarwal, Vikas & Ruenzi, Stefan & Weigert, Florian, 2017. "Tail risk in hedge funds: A unique view from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 125(3), pages 610-636.
    6. Gorovyy, Sergiy & Kelly, Patrick J. & Kuzmina, Olga, 2021. "Does secrecy signal skill? Own-investor secrecy and hedge fund performance," Journal of Banking & Finance, Elsevier, vol. 133(C).
    7. Jung‐Soon Shin & Minki Kim & Dongjun Oh & Tong Suk Kim, 2019. "Do hedge funds time market tail risk? Evidence from option‐implied tail risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 205-237, February.
    8. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2019. "Upside potential of hedge funds as a predictor of future performance," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 212-229.
    9. François-Éric Racicot & Raymond Théoret, 2022. "Tracking market and non-traditional sources of risks in procyclical and countercyclical hedge fund strategies under extreme scenarios: a nonlinear VAR approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    10. Cui, Wei & Yao, Juan, 2020. "Funds of hedge funds: Are they really the high society for little guys?," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 346-361.
    11. Turan G. Bali & Florian Weigert, 2018. "Have Hedge Funds Solved the Idiosyncratic Volatility Puzzle?," Working Papers on Finance 1827, University of St. Gallen, School of Finance.
    12. Frank Hespeler & Giuseppe Loiacono, 2017. "Monitoring systemic risk in the hedge fund sector," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1859-1883, December.
    13. Urbi Garay & Enrique Ter Horst & German Molina & Abel Rodriguez, 2016. "Bayesian Nonparametric Measurement of Factor Betas and Clustering with Application to Hedge Fund Returns," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
    14. Mathias S. Kruttli & Phillip J. Monin & Sumudu W. Watugala, 2017. "Investor Concentration, Flows, and Cash Holdings : Evidence from Hedge Funds," Finance and Economics Discussion Series 2017-121, Board of Governors of the Federal Reserve System (U.S.).
    15. Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
    16. Mark D. Flood & Phillip Monin, 2016. "Form PF and Hedge Funds: Risk-measurement Precision for Option Portfolios," Working Papers 16-02, Office of Financial Research, US Department of the Treasury.
    17. Yang, Lu & Hamori, Shigeyuki, 2023. "Modeling the global sovereign credit network under climate change," International Review of Financial Analysis, Elsevier, vol. 87(C).
    18. Bali, Turan G. & Weigert, Florian, 2021. "Hedge funds and the positive idiosyncratic volatility effect," CFR Working Papers 21-01, University of Cologne, Centre for Financial Research (CFR).
    19. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    20. Alexander Berglund & Massimo Guidolin & Manuela Pedio, 2020. "Monetary policy after the crisis: A threat to hedge funds' alphas?," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 219-238, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:37:y:2022:i:5:p:988-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.