IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v32y2014i12p1157-1170.html
   My bibliography  Save this article

A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials

Author

Listed:
  • Rita Faria
  • Manuel Gomes
  • David Epstein
  • Ian White

Abstract

Missing data are a frequent problem in cost-effectiveness analysis (CEA) within a randomised controlled trial. Inappropriate methods to handle missing data can lead to misleading results and ultimately can affect the decision of whether an intervention is good value for money. This article provides practical guidance on how to handle missing data in within-trial CEAs following a principled approach: (i) the analysis should be based on a plausible assumption for the missing data mechanism, i.e. whether the probability that data are missing is independent of or dependent on the observed and/or unobserved values; (ii) the method chosen for the base-case should fit with the assumed mechanism; and (iii) sensitivity analysis should be conducted to explore to what extent the results change with the assumption made. This approach is implemented in three stages, which are described in detail: (1) descriptive analysis to inform the assumption on the missing data mechanism; (2) how to choose between alternative methods given their underlying assumptions; and (3) methods for sensitivity analysis. The case study illustrates how to apply this approach in practice, including software code. The article concludes with recommendations for practice and suggestions for future research. Copyright The Author(s) 2014

Suggested Citation

  • Rita Faria & Manuel Gomes & David Epstein & Ian White, 2014. "A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials," PharmacoEconomics, Springer, vol. 32(12), pages 1157-1170, December.
  • Handle: RePEc:spr:pharme:v:32:y:2014:i:12:p:1157-1170
    DOI: 10.1007/s40273-014-0193-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40273-014-0193-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40273-014-0193-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew R. Willan & Andrew H. Briggs & Jeffrey S. Hoch, 2004. "Regression methods for covariate adjustment and subgroup analysis for non‐censored cost‐effectiveness data," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 461-475, May.
    2. Jan B. Oostenbrink & Maiwenn J. Al, 2005. "The analysis of incomplete cost data due to dropout," Health Economics, John Wiley & Sons, Ltd., vol. 14(8), pages 763-776, August.
    3. David K. Blough & Scott Ramsey & Sean D. Sullivan & Roger Yusen, 2009. "The impact of using different imputation methods for missing quality of life scores on the estimation of the cost‐effectiveness of lung‐volume‐reduction surgery," Health Economics, John Wiley & Sons, Ltd., vol. 18(1), pages 91-101, January.
    4. Paul C. Lambert & Lucinda J. Billingham & Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams, 2008. "Estimating the cost‐effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    2. Manuel Gomes & Karla Díaz-Ordaz & Richard Grieve & Michael G. Kenward, 2013. "Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies," Medical Decision Making, , vol. 33(8), pages 1051-1063, November.
    3. Andrea Gabrio & Alexina J. Mason & Gianluca Baio, 2017. "Handling Missing Data in Within-Trial Cost-Effectiveness Analysis: A Review with Future Recommendations," PharmacoEconomics - Open, Springer, vol. 1(2), pages 79-97, June.
    4. Bernhard Michalowsky & Wolfgang Hoffmann & Kevin Kennedy & Feng Xie, 2020. "Is the whole larger than the sum of its parts? Impact of missing data imputation in economic evaluation conducted alongside randomized controlled trials," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(5), pages 717-728, July.
    5. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    6. M. Carreras & M. García-Goñi & P. Ibern & J. Coderch & L. Vall-Llosera & J. Inoriza, 2011. "Estimates of patient costs related with population morbidity: can indirect costs affect the results?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 12(4), pages 289-295, August.
    7. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    8. Abualbishr Alshreef & Allan J. Wailoo & Steven R. Brown & James P. Tiernan & Angus J. M. Watson & Katie Biggs & Mike Bradburn & Daniel Hind, 2017. "Cost-Effectiveness of Haemorrhoidal Artery Ligation versus Rubber Band Ligation for the Treatment of Grade II–III Haemorrhoids: Analysis Using Evidence from the HubBLe Trial," PharmacoEconomics - Open, Springer, vol. 1(3), pages 175-184, September.
    9. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    10. Andrea Manca & Neil Hawkins & Mark J. Sculpher, 2005. "Estimating mean QALYs in trial‐based cost‐effectiveness analysis: the importance of controlling for baseline utility," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 487-496, May.
    11. Rachael Hunter & Gianluca Baio & Thomas Butt & Stephen Morris & Jeff Round & Nick Freemantle, 2015. "An Educational Review of the Statistical Issues in Analysing Utility Data for Cost-Utility Analysis," PharmacoEconomics, Springer, vol. 33(4), pages 355-366, April.
    12. Lukas Kwietniewski & Mareike Heimeshoff & Jonas Schreyögg, 2017. "Estimation of a physician practice cost function," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(4), pages 481-494, May.
    13. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    14. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    15. Yu-Wen Wen & Yi-Wen Tsai & David Bin-Chia Wu & Pei-Fen Chen, 2013. "The Impact of Outliers on Net-Benefit Regression Model in Cost-Effectiveness Analysis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    16. David K. Blough & Scott Ramsey & Sean D. Sullivan & Roger Yusen, 2009. "The impact of using different imputation methods for missing quality of life scores on the estimation of the cost‐effectiveness of lung‐volume‐reduction surgery," Health Economics, John Wiley & Sons, Ltd., vol. 18(1), pages 91-101, January.
    17. Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
    18. M. Carreras & Manuel García-Goñi & Pere Ibern & J. Coderch & L. Vall-Llosera & José María Inoriza, 2009. "Estimates of patient costs related with population morbidity: Can indirect costs affect the results?," Economics Working Papers 1138, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    20. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:32:y:2014:i:12:p:1157-1170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.