IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i4p1156-1167.html
   My bibliography  Save this article

Copula‐based semiparametric models for spatiotemporal data

Author

Listed:
  • Yanlin Tang
  • Huixia J. Wang
  • Ying Sun
  • Amanda S. Hering

Abstract

The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non‐Gaussian. In this paper, we introduce a copula‐based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions.

Suggested Citation

  • Yanlin Tang & Huixia J. Wang & Ying Sun & Amanda S. Hering, 2019. "Copula‐based semiparametric models for spatiotemporal data," Biometrics, The International Biometric Society, vol. 75(4), pages 1156-1167, December.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1156-1167
    DOI: 10.1111/biom.13066
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13066
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno Bevilacqua & Christian Caamaño‐Carrillo & Carlo Gaetan, 2020. "On modeling positive continuous data with spatiotemporal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1156-1167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.