IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i4ne2609.html
   My bibliography  Save this article

Modeling sea‐level processes on the U.S. Atlantic Coast

Author

Listed:
  • Candace Berrett
  • William F. Christensen
  • Stephan R. Sain
  • Nathan Sandholtz
  • David W. Coats
  • Claudia Tebaldi
  • Hedibert F. Lopes

Abstract

One of the major concerns engendered by a warming climate are changing sea levels and their lasting effects on coastal populations, infrastructures, and natural habitats. Sea levels are now monitored by satellites, but long‐term records are only available at discrete locations along the coasts. Sea levels and sea‐level processes must be better understood at the local level to best inform real‐world adaptation decisions. We propose a statistical model that facilitates the characterization of known sea‐level processes, which jointly govern the observed sea level along the United States Atlantic Coast. Our model not only incorporates long‐term sea level rise and seasonal cycles but also accurately accounts for residual spatiotemporal processes. By combining a spatially varying coefficient modeling approach with spatiotemporal factor analysis methods in a Bayesian framework, the method represents the contribution of each of these processes and accounts for corresponding dependencies and uncertainties in a coherent way. Additionally, the model provides a consistent way to estimate these processes and sea level values at unmonitored locations along the coast. We show the outcome of the proposed model using thirty years of sea level data from 38 stations along the Atlantic (east) Coast of the United States. Among other results, our method estimates the rate of sea level rise to range from roughly 1 mm/year in the northern and southern regions of the Atlantic coast to 5.4 mm/year in the middle region.

Suggested Citation

  • Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:4:n:e2609
    DOI: 10.1002/env.2609
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2609
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    2. Lopes, Hedibert Freitas & Gamerman, Dani & Salazar, Esther, 2011. "Generalized spatial dynamic factor models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1319-1330, March.
    3. William F. Christensen, 2011. "Filtered Kriging for Spatial Data with Heterogeneous Measurement Error Variances," Biometrics, The International Biometric Society, vol. 67(3), pages 947-957, September.
    4. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Matthias Katzfuss & Noel Cressie, 2012. "Bayesian hierarchical spatio‐temporal smoothing for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 94-107, February.
    5. Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
    6. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    7. Longxiang Li & Jianhua Gong & Jieping Zhou, 2014. "Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    8. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    9. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    10. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    11. Ephraim M. Hanks & Erin M. Schliep & Mevin B. Hooten & Jennifer A. Hoeting, 2015. "Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 243-254, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.
    2. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    3. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    4. Erin M. Schliep, 2018. "Comments on: Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 778-782, December.
    5. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    6. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    7. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    8. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    9. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    10. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
    11. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    12. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    13. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    14. Erin M. Schliep & Alan E. Gelfand & James S. Clark & Roland Kays, 2018. "Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 334-357, September.
    15. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    16. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    17. Esmail Yarali & Firoozeh Rivaz, 2020. "Incorporating covariate information in the covariance structure of misaligned spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    18. Xu Ning & Francis K. C. Hui & Alan H. Welsh, 2023. "A double fixed rank kriging approach to spatial regression models with covariate measurement error," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    19. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    20. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:4:n:e2609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.