PM 2.5 Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kang, Emily L. & Cressie, Noel, 2011. "Bayesian Inference for the Spatial Random Effects Model," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 972-983.
- Hai Nguyen & Noel Cressie & Amy Braverman, 2012. "Spatial Statistical Data Fusion for Remote Sensing Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1004-1018, September.
- Xianhua Wu & Ji Guo, 2021. "A Multi-scale Periodic Study of PM2.5 Concentration in the Yangtze River Delta of China Based on Empirical Mode Decomposition-Wavelet Analysis," Springer Books, in: Economic Impacts and Emergency Management of Disasters in China, edition 1, chapter 0, pages 45-80, Springer.
- Veronica J. Berrocal & Alan E. Gelfand & David M. Holland, 2012. "Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality," Biometrics, The International Biometric Society, vol. 68(3), pages 837-848, September.
- Kang, Emily L. & Liu, Desheng & Cressie, Noel, 2009. "Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3016-3032, June.
- Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
- Noel Cressie, 2018. "Mission CO2ntrol: A Statistical Scientist's Role in Remote Sensing of Atmospheric Carbon Dioxide," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 152-168, January.
- Ji, Xi & Yao, Yixin & Long, Xianling, 2018. "What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective," Energy Policy, Elsevier, vol. 119(C), pages 458-472.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huiping Wang & Qi Ge, 2022. "Analysis of the Spatial Association Network of PM 2.5 and Its Influencing Factors in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Esmail Yarali & Firoozeh Rivaz, 2020. "Incorporating covariate information in the covariance structure of misaligned spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
- Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
- Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
- Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
- Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
- Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
- Hensley H Mariathas & Brajendra C Sutradhar, 2016. "Variable Family Size Based Spatial Moving Correlations Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 1-38, May.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
- Jun Wang & Yang Wang & Hui Zeng, 2016. "A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis," Journal of Geographical Systems, Springer, vol. 18(1), pages 45-66, January.
- Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
- Jun Bai & Shixiang Li & Nan Wang & Jianru Shi & Xianmin Li, 2020. "Spatial Spillover Effect of New Energy Development on Economic Growth in Developing Areas of China—An Empirical Test Based on the Spatial Dubin Model," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
- Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
- Landrum, Carla & Castrignanò, Annamaria & Mueller, Tom & Zourarakis, Demetrio & Zhu, Junfeng & De Benedetto, Daniela, 2015. "An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics," Agricultural Water Management, Elsevier, vol. 147(C), pages 144-153.
- Wang, Xiaomin & Tian, Guanghui & Yang, Dongyang & Zhang, Wenxin & Lu, Debin & Liu, Zhongmei, 2018. "Responses of PM2.5 pollution to urbanization in China," Energy Policy, Elsevier, vol. 123(C), pages 602-610.
More about this item
Keywords
spatial statistics; basis functions; heterogeneity; spatial correlation; PM 2.5 concentrations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10811-:d:902003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.