IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v25y2009i2p163-177.html
   My bibliography  Save this article

Issues in the optimal design of computer simulation experiments

Author

Listed:
  • Werner Müller
  • Milan Stehlík

Abstract

Output from computer simulation experiments is often approximated as realizations of correlated random fields. Consequently, the corresponding optimal design questions must cope with the existence and detection of an error correlation structure, issues largely unaccounted for by traditional optimal design theory. Unfortunately, many of the nice features of well‐established design techniques, such as additivity of the information matrix, convexity of design criteria, etc., do not carry over to the setting of interest. This may lead to unexpected, counterintuitive, even paradoxical effects in the design as well as the analysis stage of computer simulation experiments. In this paper we intend to give an overview and some simple but illuminating examples of this behaviour. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
  • Handle: RePEc:wly:apsmbi:v:25:y:2009:i:2:p:163-177
    DOI: 10.1002/asmb.740
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.740
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Goos, Peter & Kobilinsky, Andre & O'Brien, Timothy E. & Vandebroek, Martina, 2005. "Model-robust and model-sensitive designs," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 201-216, April.
    2. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    3. Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
    4. Dale Zimmerman & Noel Cressie, 1992. "Mean squared prediction error in the spatial linear model with estimated covariance parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 27-43, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiselák, Jozef & Stehlík, Milan, 2008. "Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1388-1396, September.
    2. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    3. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    4. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
    6. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    7. Christopher J. Geoga & Mihai Anitescu & Michael L. Stein, 2021. "Flexible nonstationary spatiotemporal modeling of high‐frequency monitoring data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    8. Bachoc, François, 2013. "Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 55-69.
    9. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    10. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    11. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    12. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    13. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    14. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    15. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    16. William F. Christensen, 2011. "Filtered Kriging for Spatial Data with Heterogeneous Measurement Error Variances," Biometrics, The International Biometric Society, vol. 67(3), pages 947-957, September.
    17. Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
    18. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    19. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    20. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:25:y:2009:i:2:p:163-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.