IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i3p947-957.html
   My bibliography  Save this article

Filtered Kriging for Spatial Data with Heterogeneous Measurement Error Variances

Author

Listed:
  • William F. Christensen

Abstract

No abstract is available for this item.

Suggested Citation

  • William F. Christensen, 2011. "Filtered Kriging for Spatial Data with Heterogeneous Measurement Error Variances," Biometrics, The International Biometric Society, vol. 67(3), pages 947-957, September.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:947-957
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01563.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C. & van Beers, Wim C. M., 2005. "Robustness of Kriging when interpolating in random simulation with heterogeneous variances: Some experiments," European Journal of Operational Research, Elsevier, vol. 165(3), pages 826-834, September.
    2. Dale Zimmerman & Noel Cressie, 1992. "Mean squared prediction error in the spatial linear model with estimated covariance parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 27-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    2. Victor De Oliveira, 2013. "Poisson Kriging," Working Papers 0183mss, College of Business, University of Texas at San Antonio.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Whitney K. & Chung, Yu-Min & Wang, Yu-Bo & Mandel, Jeff E. & Wu, Hau-Tieng, 2022. "Airflow recovery from thoracic and abdominal movements using synchrosqueezing transform and locally stationary Gaussian process regression," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. H Yapicioglu & H Liu & A E Smith & G Dozier, 2011. "Hybrid approach for Pareto front expansion in heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 348-359, February.
    3. C. Helbert & D. Dupuy & L. Carraro, 2009. "Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 99-113, March.
    4. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    5. Bettonvil, Bert & del Castillo, Enrique & Kleijnen, Jack P.C., 2009. "Statistical testing of optimality conditions in multiresponse simulation-based optimization," European Journal of Operational Research, Elsevier, vol. 199(2), pages 448-458, December.
    6. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    7. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    8. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    9. Bettonvil, B.W.M. & Del Castillo, E. & Kleijnen, J.P.C., 2007. "Statistical Testing of Optimality Conditions in Multiresponse Simulation-based Optimization (Revision of 2005-81)," Other publications TiSEM 3e563d88-0029-47f6-a66b-e, Tilburg University, School of Economics and Management.
    10. Peter Salemi & Jeremy Staum & Barry L. Nelson, 2019. "Generalized Integrated Brownian Fields for Simulation Metamodeling," Operations Research, INFORMS, vol. 67(3), pages 874-891, May.
    11. Hernandez, Andres F. & Grover, Martha A., 2013. "Error estimation properties of Gaussian process models in stochastic simulations," European Journal of Operational Research, Elsevier, vol. 228(1), pages 131-140.
    12. Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
    13. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
    14. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    15. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    16. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    17. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    18. Kęstutis Dučinskas & Lina Dreižienė, 2018. "Risks of Classification of the Gaussian Markov Random Field Observations," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 422-436, October.
    19. Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
    20. Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:947-957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.