Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
- Goos, Peter & Kobilinsky, Andre & O'Brien, Timothy E. & Vandebroek, Martina, 2005. "Model-robust and model-sensitive designs," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 201-216, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baran, S. & Stehlík, M., 2015. "Optimal designs for parameters of shifted Ornstein–Uhlenbeck sheets measured on monotonic sets," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 114-124.
- Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
- Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
- Baran, Sándor & Sikolya, Kinga & Stehlík, Milan, 2013. "On the optimal designs for the prediction of Ornstein–Uhlenbeck sheets," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1580-1587.
- Boukouvalas, A. & Cornford, D. & Stehlík, M., 2014. "Optimal design for correlated processes with input-dependent noise," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1088-1102.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
- Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
- Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
- Maroussa Zagoraiou & Alessandro Baldi Antognini, 2009. "Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 583-600, September.
- Ruggoo, Arvind & Vandebroek, Martina, 2006. "Model-sensitive sequential optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1089-1099, November.
- Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
- Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
- Alain Pirotte & Jesús Mur, 2017.
"Neglected dynamics and spatial dependence on panel data: consequences for convergence of the usual static model estimators,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 202-229, July.
- Alain Pirotte & Jesús Mur, 2016. "Neglected dynamics and spatial dependence on panel data: consequences for convergence of the usual static model estimators," Post-Print hal-04149276, HAL.
- Tae Kim & Jeong Park & Gyu Song, 2010. "An asymptotic theory for the nugget estimator in spatial models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 181-195.
- Lim, Chae Young & Stein, Michael, 2008. "Properties of spatial cross-periodograms using fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1962-1984, October.
- Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
- Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
- Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2020. "Birnbaum-Saunders Quantile Regression Models with Application to Spatial Data," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
- José León & Carenne Ludeña, 2015. "Difference based estimators and infill statistics," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 1-31, April.
- Christopher J. Geoga & Mihai Anitescu & Michael L. Stein, 2021. "Flexible nonstationary spatiotemporal modeling of high‐frequency monitoring data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
- Bachoc, François, 2013. "Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 55-69.
- Boukouvalas, A. & Cornford, D. & Stehlík, M., 2014. "Optimal design for correlated processes with input-dependent noise," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1088-1102.
- Bachoc, François & Bevilacqua, Moreno & Velandia, Daira, 2019. "Composite likelihood estimation for a Gaussian process under fixed domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Haozhe Zhang & Yehua Li, 2020. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Papers 2006.13489, arXiv.org, revised Jun 2021.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1388-1396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.